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Effect of electric field of the electrosphere on photon emission from quark stars
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We investigate the photon emission from the electrosphere of a quark star. It is shown that at tem-
peratures T ∼ 0.1–1 MeV the dominating mechanism is the bremsstrahlung due to bending of electron
trajectories in the mean Coulomb field of the electrosphere. The radiated energy flux from this mech-
anism exceeds considerably both the contribution from the bremsstrahlung due to electron–electron
interaction and the tunnel e+e− pair creation.
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1. It is possible that quark stars made of a stable strange quark
matter (SQM) [1–3] (if it exists) may exist without a crust of nor-
mal matter [4]. The quark density for bare quark stars should drop
abruptly at the scale ∼ 1 fm. The SQM in normal phase and in the
two-flavor superconducting (2SC) phase should also contain elec-
trons (for normal phase the electron chemical potential, μ, is about
20 MeV [2,5]). Contrary to the quark density the electron density
drops smoothly above the star surface at the scale ∼ 103 fm [2,5].
For the star surface temperature T � μ, say T � 1010 K ∼ 1 MeV,
this “electron atmosphere” (usually called the electrosphere) may
be viewed as a strongly degenerate relativistic electron gas [2,5].
The photon emission from the normal SQM is negligibly small
as compared to the black body one at T � ωp [6,7] (here ωp ∼
20 MeV is the plasma frequency of the SQM [6]). However, for the
electrosphere the plasma frequency is much smaller than that for
the SQM. For this reason the photon emission from the electro-
sphere may potentially dominate the luminosity of a quark star.
Contrary to neutron stars (or quark stars with a crust of normal
matter) the photon emission from the electrosphere of bare quark
stars may exceeds the Eddington limit, and may be used for dis-
tinguishing a bare quark star from a neutron star (or a quark star
with a crust of normal matter). For this reason it is of great im-
portance to have quantitative predictions for the photon emission
from the electrosphere. This is also of interest in the context of the
scenario of the gamma-ray repeaters due to reheating of a quark
star by impact of a massive comet-like object [8].

The bremsstrahlung from the electrosphere due to the electron–
electron interaction has been addressed in [9,10]. The authors of
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[9] used the soft photon approximation and factorized the e + e →
e + e cross section in the spirit of Low’s theorem. In [10] it was
pointed out that this approximation is inadequate since it neglects
the effect of the photon energy on the electron Pauli-blocking
which should lead to a strong overestimate of the radiation rate.
The authors of [10] have not given a consistent treatment of this
problem either. To take into account the effect of the minimal
photon energy they suggested some restrictions on the initial elec-
tron momenta introduced by hand. In this way they obtained the
radiated energy flux from the e−e− → e−e−γ process which is
much smaller than that in [9], and than the energy flux from an-
nihilation of positrons produced in the tunnel e+e− creation in
the electric field of the electrosphere [4,11]. In [12] there was an
attempt to include the effect of the mean Coulomb field of the
electrosphere on the photon emission. The authors obtained a con-
siderable enhancement of the radiation rate. However, similarly to
[9] the analysis [12] treats incorrectly the Pauli-blocking effect.

Thus the theoretical situation with the photon bremsstrahlung
from the electrosphere is still controversial and uncertain. The
main problem here is an accurate accounting for the photon en-
ergy in the Pauli-blocking. In the present Letter we address the
bremsstrahlung from the electrosphere in a way similar to the
Arnold–Moore–Yaffe (AMY) [13] approach to the collinear photon
emission from a hot quark–gluon plasma within the thermal field
theory. We use a reformulation of the AMY formalism given in
[14] which is based on the light-cone path integral (LCPI) approach
[15–17] (for reviews, see [18,19]) to the radiation processes. For an
infinite homogeneous plasma (with zero mean field) the formalism
[14] reproduces the AMY results [13]. The LCPI formulation [14]
has the advantage that it also works for plasmas with nonzero
mean field. It allows to evaluate the photon emission accounting
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for bending of the electron trajectories in the mean Coulomb po-
tential of the electrosphere. Contrary to very crude and qualitative
methods of [9,10,12] the treatment of the Pauli-blocking effects in
[13,14] has robust quantum field theoretical grounds. Of course,
our approach is only valid in the regime of collinear photon emis-
sion when the dominating photon energies exceed several units of
the photon quasiparticle mass. Numerical calculations show that
even at T ∼ 0.1 MeV the effect of the noncollinear configurations
is relatively small.

We demonstrate that for the temperatures T ∼ 0.1–1 MeV the
radiated energy flux from the e− → e−γ transition in the mean
electric field turns out to be much bigger than contributions from
the e−e− → e−e−γ process and the tunnel e+e− creation. Our re-
sults show that the photon emission from the electrosphere may
be of the same order as the black body radiation. For this reason
the situation with distinguishing a bare quark star made of the
SQM in normal (or 2SC) phase from a neutron star using the lu-
minosity [4,20] may be more optimistic than in the scenario with
the tunnel e+e− creation [4].

2. As in [4,9,10] we use for the electrosphere the model of a
relativistic strongly degenerate electron gas in the Thomas–Fermi
approximation. Then the electron chemical potential (related to the
electrostatic potential, V , as μ = eV ) may be written as [2,5]

μ(h) = μ(0)

(1 + h/H)
, (1)

where h is the distance from the quark surface, and H = √
3π/2α/

μ(0), α = e2/4π (we use units c = h̄ = kB = 1).
We assume that the electrosphere is optically thin. Then the

luminosity may be expressed in terms of the energy radiated spon-
taneously per unit time and volume, Q γ , usually called the emissi-
tivity. In the formalism [14] the emissitivity per unit photon energy
ω at a given h can be written as

dQ γ (h,ω)

dω
= ω(k)

4π3

dk

dω

×
∫

dp

p
nF (E)

[
1 − nF

(
E ′)]θ(p − k)

dP (p, x)

dx dL
, (2)

where k is the photon momentum, E and E ′ are the electron ener-
gies before and after photon emission, nF (E) = (exp((E − μ)/T ) +
1)−1 is the local electron Fermi distribution (we omit the argu-
ment h in the functions on the right-hand side of (2)), x = k/p is
the photon longitudinal (along the initial electron momentum p)
fractional momentum. The function dP/dx dL in (2) is the probabil-
ity of the photon emission per unit x and length from an electron
in the potential generated by other electrons which includes both
the smooth collective Coulomb field and the usual fluctuating part.
Note that (2) assumes that the photon emission is a local process,
i.e. the photon formation length l f is small compared to the thick-
ness of the electrosphere.

In the LCPI formalism [15,18] the photon spectrum dP/dx dL
can be written as

dP

dx dL
= 2 Re

∞∫
0

dξ ĝ(x)
[

K
(
ρ ′, ξ |ρ,0

) − Kv
(
ρ ′, ξ |ρ,0

)]∣∣
ρ ′=ρ=0.

(3)

Here ĝ is the spin vertex operator (it can be found in [18]), K is
the Green’s function for the two-dimensional Hamiltonian

Ĥ = − 1

2M(x)

(
∂

∂ρ

)2

+ v(ρ) + 1

L0
, (4)

where M(x) = px(1 − x), L0 = 2M(x)/ε2, ε2 = m2
e x2 + (1 − x)m2

γ
(mγ is the photon quasiparticle mass), the form of the potential v
will be given below. In (3), (4) ρ is the coordinate transverse to
the electron momentum p, the longitudinal (along p) coordinate
ξ plays the role of time. The Kv in (3) is the free Green’s func-
tion for v = 0. Note that at low density and vanishing mean field
the quantity L0 coincides with the real photon formation length
l f [15].

The potential in the Hamiltonian (4) can be written as v =
vm + v f . The terms vm and v f correspond to the mean and fluctu-
ating components of the vector potential of the electron gas. Note
that when l f is small compared to the scale of variation of μ
(along the electron momentum) one can neglect the ξ -dependence
of the potential v in evaluating dP/dx dL. The mean field compo-
nent is purely real vm = −xf · ρ with f = e∂V /∂ρ [18,21]. It is
related to the transverse force from the mean field. Note that, sim-
ilarly to the classical radiation [22], the effect of the longitudinal
force along the electron momentum p is suppressed by a factor
∼ (me/E)2, and can be safely neglected. The term v f can be eval-
uated similarly to the case of the quark–gluon plasma discussed in
[14]. This part is purely imaginary v f (ρ) = −i P (xρ), where

P (ρ) = e2

∞∫
−∞

dξ
[
G(ξ,0⊥, ξ) − G(ξ,ρ, ξ)

]
, (5)

G(x − y) = uμuν Dμν , Dμν = 〈Aμ(x)Aν(y)〉 is the correlation func-
tion of the electromagnetic potential (the mean field is assumed
to be subtracted) in the electron plasma, uμ = (1,0,0,−1) is the
light-cone 4-vector (along the electron momentum). The correlator
Dμν may be expressed in terms of the longitudinal and transverse
photon self-energies, ΠL,T [13]. In numerical calculations we use
for the ΠL,T the well-known hard dense loop expressions [23,24].

Treating v f as a perturbation one can write

K(ξ2,ρ2|ξ1,ρ1)

= Km(ξ2,ρ2|ξ1,ρ1)

− i

∫
dξ dρ Km(ξ2,ρ2|ξ,ρ)v f (ρ)Km(ξ,ρ|ξ1,ρ1) + · · · , (6)

where Km is the Green’s function for v f = 0. Then (3) can be writ-
ten as

dP

dx dL
= dPm

dx dL
+ dP f

dx dL
. (7)

Here the first term on the right-hand side comes from the Km −
Kv in (3) after representing K in the form (6). It corresponds to
the photon emission in a smooth mean field. The second term
comes from the series in v f in (6). This term can be viewed
as the radiation rate due to electron multiple scattering in the
fluctuating field in the presence of a smooth external field. The
analytical expression for the Green’s function Km is known (see,
for example [25]). The corresponding spectrum is similar to the
well-known synchrotron spectrum, and can be written in terms

of the Airy function Ai(z) = 1
π

√
z
3 K1/3(2z3/2/3) (here K1/3 is the

Bessel function) [21,26]. In the case of interest, for a nonzero pho-
ton quasiparticle mass it reads [21]

dPm

dx dL
= a

κ
Ai′(κ) + b

∞∫
κ

dy Ai(y), (8)

where a = −2ε2 g1/M , b = Mg2 − ε2 g1/M , κ = ε2/(M2x2f2)1/3,
g1 = α(1 − x + x2/2)/x and g2 = αm2

e x3/2M2. Note that the ef-
fective photon formation length for the mean field mechanism is
given by L̄m ∼ min(L0, Lm), where Lm = (24M/x2f2)1/3 [21].
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