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Lorentz violation and black-hole thermodynamics: Compton scattering process
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A Lorentz-noninvariant modification of quantum electrodynamics (QED) is considered, which has photons
described by the nonbirefringent sector of modified Maxwell theory and electrons described by the
standard Dirac theory. These photons and electrons are taken to propagate and interact in a Schwarzschild
spacetime background. For appropriate Lorentz-violating parameters, the photons have an effective
horizon lying outside the Schwarzschild horizon. A particular type of Compton scattering event, taking
place between these two horizons (in the photonic ergoregion) and ultimately decreasing the mass of
the black hole, is found to have a nonzero probability. These events perhaps allow for a violation of the
generalized second law of thermodynamics in the Lorentz-noninvariant theory considered.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Lorentz-violating theories coupled to gravity can have interest-
ing black-hole solutions. Particles that obey Lorentz-violating dis-
persion relations may perceive an effective horizon different from
the event horizon for standard Lorentz-invariant matter [1–3]. It
has been argued [1,2] that such multiple-horizon structures allow
for the construction of a perpetuum mobile of the second kind (in-
volving heat transfer from a cold body to a hot body, without other
change).

This Letter considers modified Maxwell theory [4] as a con-
crete realization of a Lorentz-violating theory. With an appropri-
ate choice for the Lorentz-violating parameters, the nonstandard
photons have an effective horizon lying outside the Schwarzschild
event horizon for standard matter. Of interest, now, are Compton
scattering events γ e− → γ e− , which take place between these
two horizons, that is, in the accessible part of the photonic er-
gosphere region. After the collision, the photon may carry negative
Killing energy as it propagates inside the photonic ergosphere, so
that the final electron carries away more Killing energy than the
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sum of the Killing energies of the ingoing particles. As shown in
Section IV.B of Ref. [2], such a scattering event ultimately reduces
the black-hole mass. In the following, it will be demonstrated that
this particular Compton scattering event is kinematically allowed
and has a nonvanishing probability to occur.

The purpose of this Letter is to give a concrete example of a
Compton scattering event that can be used to reduce the black-
hole mass. This requires a detailed discussion of the theory in
Section 2, which can, however, be skipped in a first reading. The
main result is presented in Section 3 and discussed in Section 4,
both of which sections are reasonably self-contained.

2. Setup

2.1. Units and conventions

Natural units are used with c = GN = h̄ = 1. Spacetime indices
are denoted by Greek letters and correspond to t , r, θ , φ for
standard spherical Schwarzschild coordinates or to τ , R , θ , φ for
Lemaître coordinates. Local Lorentz indices are denoted by Latin
letters and run from 0 to 3. The flat-spacetime Minkowski met-
ric is ηab and the curved-spacetime Einstein metric gμν , both with
signature (+,−,−,−). The determinant of the metric is denoted
by g ≡ det gμν . The vierbeins are introduced in the standard way
by writing gμν = eμ

aeν
bηab and obey the relations eμ

aeμ
b = δb

a

and eμ
aeν

a = δ
μ
ν .
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2.2. Modified QED in curved spacetime

Modified Maxwell theory is an Abelian U (1) gauge theory with
a Lagrange density that consists of the standard Maxwell term
and an additional Lorentz-violating bilinear term [4–7]. The vier-
bein formalism is particularly well-suited for describing Lorentz-
violating theories in curved spacetime, since it allows to distin-
guish between local Lorentz and general coordinate transforma-
tions [8] and to set the torsion identically to zero.

A minimal coupling procedure then yields the following La-
grange density for the photonic part of the action:

LmodM = −1

4
gμρ gνσ Fμν Fρσ − 1

4
κμνρσ Fμν Fρσ , (2.1a)

κμνρσ ≡ κabcdeμ
aeν

beρ
ceσ

d, (2.1b)

in terms of the standard Maxwell field strength tensor Fμν ≡
∂μ Aν − ∂ν Aμ . The “tensor” κabcd has the same symmetries as the
Riemann curvature tensor, as well as a double-trace condition. The
numbers κabcd(x) are considered to be fixed parameters, with no
field equations of their own.

In the following, we explicitly choose this background tensor
field to be of the form [5]

κabcd(x) = 1

2

(
ηac κ̃bd(x) − ηadκ̃bc(x)

+ ηbdκ̃ac(x) − ηbc κ̃ad(x)
)
, (2.2)

in terms of a symmetric and traceless background field κ̃ab(x).
Physically, (2.2) implies the restriction to the nonbirefringent sec-
tor of modified Maxwell theory. Moreover, we employ the follow-
ing decomposition of κ̃ab(x):

κ̃ab(x) = κ
(
ξa(x)ξb(x) − ηab/4

)
, (2.3)

relative to a normalized parameter four-vector ξa with ξaξ
a = 1.

For our purpose, we will choose the parameter κ in (2.3) to be
spacetime independent.

The breaking of Lorentz invariance in the electromagnetic the-
ory (2.1) is indicated by the fact that the flat-spacetime theory
allows for maximal photon velocities different from c = 1 (op-
erationally defined by the maximum attainable velocity of stan-
dard Lorentz-invariant particles to be discussed shortly). See, e.g.,
Refs. [4–7] for further details of the simplest version of modified
Maxwell theory with constant κabcd over Minkowski spacetime
and physical bounds on its 19 parameters.

The charged particles (electrons) are described by the standard
Dirac Lagrangian over curved spacetime [9] and gravity itself by
the standard Einstein–Hilbert Lagrangian [10]. All in all, this partic-
ular modification of quantum electrodynamics (QED) has action

S =
∫

R4

d4x
√−g (LEH + LD + LmodM), (2.4a)

LEH = R/(16π), (2.4b)

LD = ψ̄

(
1

2
γ aeμ

a i
←→∇ μ − m

)
ψ, (2.4c)

with Ricci curvature scalar R from the metric gμν , the usual Dirac
matrices γ a , and the gauge- and Lorentz-covariant derivative of a
spinor [9],

∇μψ ≡ ∂μψ + Γμψ − e Aμψ, (2.5a)

with spin connection

Γμ = 1

2
Σabea

ν∂μ(ebν), Σab ≡ 1

4
(γaγb − γbγa). (2.5b)

2.3. Effective background for the photons

As demonstrated in Section 3 of Ref. [3], photons described by
the Lagrange density (2.1) with the Lorentz-violating parameters
(2.2)–(2.3) propagate on null-geodesics of an effective metric. This
effective metric is given by:

g̃μν(x) = gμν(x) − κ

1 + κ/2
ξμ(x)ξν(x), (2.6)

with an inverse following from g̃μν g̃νρ = δμ
ρ . All lowering or rais-

ing of indices is, however, understood to be performed by contrac-
tion with the original background metric gμν or its inverse gμν ,
unless stated otherwise.

In order to avoid obvious difficulties with causality, we restrict
our considerations to a subset of theories without space-like pho-
ton trajectories (with respect to the original metric). This is en-
sured by the choice 0 � κ < 2.

2.4. Schwarzschild spacetime metric

In the following, we consider a standard Schwarzschild geome-
try as given by the following line element:

ds2 = (1 − 2M/r)dt2 − (1 − 2M/r)−1 dr2 − r2 dΩ2, (2.7a)

dΩ2 ≡ dθ2 + sin2 θ dφ2. (2.7b)

It will be convenient to work with Lemaître coordinates,

ds2 = dτ 2 −
(

3(R − τ )

4M

)−2/3

dR2

− (
3/2(R − τ )

)4/3
(2M)2/3 dΩ2, (2.8)

as Lemaître coordinates describe the standard Schwarzschild solu-
tion in coordinates which are nonsingular at the horizon (corre-
sponding to the reference frame of a free-falling observer).

The transformation to standard Schwarzschild coordinates reads

dτ = dt +
√

2M/r

1 − 2M/r
dr, (2.9a)

dR = dt + 1

(1 − 2M/r)
√

2M/r
dr, (2.9b)

and the horizon is described by (R − τ ) = (4/3)M . A suitable
choice of the vierbein eμ

a is given by

eτ
0 = 1, eR

1 = √|gR R |, eθ
2 = √|gθθ |, eφ

3 = √|gφφ |,
(2.10)

with all other components vanishing.

2.5. Effective Schwarzschild metric for the photons

For the vector field ξμ(x) = eμ
a(x)ξa(x) entering the non-

standard part of the photonic action (2.1)–(2.3) and the effective
Lorentz-violating parameter, we take

ξμ(x) = (1,0,0,0), (2.11a)

ε ≡ κ

1 − κ/2
, (2.11b)

where the first expression (in Lemaître coordinates) makes clear
that the photonic Lorentz violation is isotropic and the last expres-
sion introduces a convenient Lorentz-violating parameter for the
theory considered. The particular parameter choices (2.11) corre-
spond to Case 1 in Ref. [3]. Asymptotically (R → ∞ for fixed τ ),
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