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Abstract

We generalize our virial approach to study spin-polarized neutron matter and the consistent neutrino response at low densities. In the long-
wavelength limit, the virial expansion makes model-independent predictions for the density and spin response, based only on nucleon–nucleon
scattering data. Our results for the neutrino response provide constraints for random-phase approximation or other model calculations, and we
compare the virial vector and axial response to response functions used in supernova simulations. The virial expansion is suitable to describe
matter near the supernova neutrinosphere, and this work extends the virial equation of state to predict neutrino interactions in neutron matter.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Neutrinos radiate 99% of the energy in core-collapse su-
pernovae. The scattering of neutrinos and the physics of the
explosion are most sensitive to the properties of low-density
nucleonic matter [1,2], which is a complex problem due to
strong coupling with large scattering lengths, clustering in nu-
clear matter and the non-central nature of nuclear interactions.
For low densities and high temperatures, the virial expansion
provides a tractable approach to strong interactions, and in pre-
vious works we have presented the virial equation of state of
low-density nucleonic matter [3,4]. The predicted large sym-
metry energy at low densities has been confirmed in near Fermi
energy heavy-ion collisions [5].

The virial approach can be used to describe matter in ther-
mal equilibrium around the neutrinosphere in supernovae. The
temperature of the neutrinosphere is roughly T ∼ 4 MeV from
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about 20 neutrinos detected in SN1987a [6,7], and the den-
sity follows from known cross sections of neutrinos with these
energies n ∼ 1011–1012 g/cm3. For neutron matter, the virial
expansion in terms of the fugacity z = eμ/T is valid for

(1)n = 2

λ3
z +O

(
z2) � 4 × 1011 (T /MeV)3/2 g/cm3,

where we require z < 1/2 and λ denotes the thermal wave-
length λ = (2π/mT )1/2. Therefore, the virial approach makes
model-independent predictions for the conditions of the neutri-
nosphere, based only on the experimental scattering data.

In this Letter, we use the virial expansion to describe how
neutrinos interact with low-density neutron matter. We focus
on neutral-current interactions, and leave charged-current reac-
tions and nuclear matter to future works. Our long-term goal is
a reliable equation of state and consistent neutrino response for
supernovae.

The free cross section per particle for neutrino–neutron elas-
tic scattering is given by [8]

(2)
1

N

dσ0

dΩ
= G2

FE2
ν

4π2

(
C2

a(3 − cos θ) + C2
v (1 + cos θ)

)
,
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where GF is the Fermi coupling constant, Eν the neutrino en-
ergy, and θ the scattering angle. The weak axial coupling is
Ca = ga/2, with ga = 1.26 the axial charge of the nucleon. The
weak vector charge is Cv = −1/2 for scattering from a neutron.
Eq. (2) neglects corrections of order Eν/m from weak mag-
netism and other effects [9].

In the medium, this cross section is modified by the vector
response Sv(q) and the axial response Sa(q)

(3)
1

N

dσ

dΩ
= G2

FE2
ν

16π2

(
g2

a(3 − cos θ)Sa(q) + (1 + cos θ)Sv(q)
)
,

where Sv and Sa describe the response of the system to den-
sity and spin fluctuations respectively, and q = 2Eν sin(θ/2)

denotes the momentum transfer. We will discuss the approxi-
mations for Eq. (3) in Section 2.3. In the following, we will
use the virial expansion to provide model-independent results
for the response in the long-wavelength (q → 0) or forward-
scattering limit.

This Letter is organized as follows. We extend the virial
equation of state to spin-polarized matter in Section 2 and de-
rive the consistent long-wavelength response. Further details
on the virial equation of state can be found in Refs. [3,4]. In
Section 3, we present results for the spin virial coefficients, the
pressure and entropy of spin-polarized neutron matter, and the
neutrino response. We compare our results to Brueckner cal-
culations, and to random-phase approximation (RPA) response
functions. Finally, we conclude in Section 4.

2. Formalism

The virial expansion is a general, model-independent ap-
proach for a dilute gas, provided the fugacity is small and for
temperatures above any phase transitions. Under these condi-
tions, the grand-canonical partition function can be expanded
in powers of the fugacity. The second virial coefficient b2 de-
scribes the z2 term in this expansion and is directly related to
the two-body scattering phase shifts [10,11]. The relation of the
third virial coefficient to three-body scattering is not straight-
forward, and was only studied for special cases [12–14]. The
virial expansion is not a perturbative kFas expansion, and its
great advantage is that it includes bound states and scattering
resonances on an equal footing.

2.1. Spin-polarized matter

The virial equation of state is easily generalized to spin-
asymmetric systems. For two spin components, we denote the
chemical potential for spin up and spin down particles by μ+
and μ−, with fugacity z+ = eμ+/T and z− = eμ−/T respec-
tively. For the virial equation of state we expand the pressure in
a power series of the fugacities

(4)

P = T

λ3

(
z+ + z− + bn,1

(
z2+ + z2−

) + 2bn,0z+z− +O
(
z3)).

The second virial coefficients bn,1 for like spins and bn,0 for
opposite spins are related to the two-particle partition function

and are given in terms of the scattering phase shifts in the next
section. The densities follow from differentiating the pressure
with respect to the fugacities. For the density of spin-up neu-
trons n+ = (∂μ+P)T = z+/T (∂z+P)T we thus have

(5)n+ = 1

λ3

(
z+ + 2bn,1z

2+ + 2bn,0z+z− +O
(
z3)),

and likewise for the density n− of spin-down neutrons

(6)n− = 1

λ3

(
z− + 2bn,1z

2− + 2bn,0z−z+ +O
(
z3)).

The total density n and the spin polarization Δ are then given
by

(7)n = n+ + n− and Δ = n+ − n−
n+ + n−

.

In this work, we truncate the virial expansion after second or-
der in the fugacities. This leads to an equation of state that is
thermodynamically consistent.

The dependence of the total density and the spin polariza-
tion on z+ and z− can be inverted to yield the virial equation
of state directly in terms of P(z+(n,Δ,T ), z−(n,Δ,T ), T ). In
practice, for a given spin polarization, we determine the spin-
down fugacity as a function of the spin-up one z−(z+,Δ,T ),
and generate the virial equation of state in tabular form for a
range of z+ values. This maintains the thermodynamic consis-
tency of the virial equation of state.

Finally, we will also discuss results for the entropy. The en-
tropy density s = S/V follows from differentiating the pressure
with respect to the temperature s = (∂T P )μi

. This leads to

s = 5P

2T
− n+ log z+ − n− log z−

(8)+ T

λ3

(
b′
n,1

(
z2+ + z2−

) + 2b′
n,0z+z−

)
,

where b′(T ) = db(T )/dT denotes the temperature derivative
of the virial coefficients.

2.2. Spin virial coefficients

The second virial coefficient bn,1 describes the interaction
of two neutrons with the same spin projection. To this end, we
generalize the second virial coefficient of the spin-symmetric
system [4,10,11] to

(9)bn,1(T ) = 21/2

πT

∞∫
0

dE e−E/2T δtot
1 (E) − 2−5/2,

where −2−5/2 is the free Fermi gas contribution and δtot
1 (E) is

the sum of the isospin and spin-triplet elastic scattering phase
shifts at laboratory energy E. This sum is over all partial waves
with angular momentum L and total angular momentum J

allowed by spin statistics, and includes a degeneracy factor
(2J + 1)/(2S + 1)
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