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Abstract

The p̄D atoms are studied in various realistic, popular N̄N potentials. The small energy shifts and decay widths of the atoms, which stem
from the short-ranged strong interactions between the antiproton and deuteron, are evaluated in a well-established, accurate approach based on the
Sturmian functions. The investigation reveals that none of the employed potentials, which reproduce the N̄N scattering data quite well, is able to
reproduce the experimental data of the energy shifts of the 2p p̄D atomic states. The energy shifts of the 2p p̄D atomic states are very sensitive
to the N̄N strong interactions, hence the investigation of the p̄D atoms is expected to provide a good platform for refining the N̄N interaction,
especially at zero energy.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The second simplest antiprotonic atom is the antiprotonic
deuteron atom p̄D, consisting of an antiproton and a deuteron
bound mainly by the Coulomb interaction but distorted by the
short range strong interaction. The study of the p̄D atom is
much later and less successful than for other exotic atoms like
the protonium and pionium. Experiments were carried out at
LEAR just in very recent years to study the properties of the
p̄D atom [1,2]. Even prior to the experiments some theoretical
works [3–5] had been carried out to study the p̄D atomic states
in simplified p̄D interactions. Recently, a theoretical work [6]
proposed a mechanism explaining the unexpected behavior, of
the scattering lengths of N̄N and p̄D system, that the imagi-
nary part of the scattering length does not increase with the size
of the nucleus.
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In the theoretical sector, one needs to overcome at least two
difficulties in the study of the p̄D atom. First, the interaction
between the antiproton and the deuteron core should be derived
from realistic N̄N interactions, for example, the Paris N̄N po-
tentials [7–9], the Dover–Richard N̄N potentials I (DR1) and II
(DR2) [10,11], and the Kohno–Weise N̄N potential [12]. Even
if a reliable p̄D interaction is in hands, the accurate evalua-
tion of the energy shifts and decay widths (stemming for the
strong p̄D interactions) and especially of the nuclear force dis-
torted wave function of the atom is still a challenge. It should
be pointed out that the methods employed in the works [3–5]
are not accurate enough for evaluating the wave functions of
the p̄D atoms.

In the present work we study the p̄D atom problem employ-
ing a properly adapted numerical method based on Sturmian
functions [13]. The method accounts for both the strong short
range nuclear potential (local and non-local) and the long range
Coulomb force and provides directly the wave function of the
p̄D system with complex eigenvalues E = ER − i Γ

2 . The pro-
tonium and pionium problems have been successfully investi-
gated [14,15] in the numerical approach. The numerical method
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is much more powerful, accurate and much easier to use than
all other methods applied to the exotic atom problem in his-
tory. The p̄D interactions in the work are derived from various
realistic N̄N potential, which is state-dependent. The work is
organized as follows. The p̄D interactions are expressed in Sec-
tion 2 in terms of the N̄N interactions. In Section 3 the energy
shifts and decay widths of the 1s and 2p p̄D atomic states are
evaluated. Discussions and conclusions are given in Section 3,
too.

2. p̄D interactions in terms of N̄N potentials

We start from the Schrödinger equation of the antiproton–
deuteron system in coordinate space(

P 2
ρ

2Mρ

+ P 2
λ

2Mλ

+ V12(�r2 − �r1) + V13(�r3 − �r1)

(1)+ V23(�r3 − �r2)

)
Ψ (�λ, �ρ) = EΨ (�λ, �ρ)

where �λ and �ρ are the Jacobi coordinates of the system, defined
as

(2)�λ = �r3 − �r1 + �r2

2
, �ρ = �r2 − �r1,

Mρ = M/2 and Mλ = 2M/3 are the reduced masses. Here we
have assigned, for simplicity, the proton and neutron the same
mass M . Eq. (1) can be expressed in the form, where the strong
interaction is expressed in the isospin basis,
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where VS and VC stand for the nuclear interaction and Coulomb
force, respectively, and take the forms
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]
V 0 and V 1 in Eq. (4) are the isospin 0 and 1 nuclear inter-
actions, respectively. Note that we have assigned �r12 as the
relative coordinate of the deuteron core.

One may express the interactions VC and VS in Eqs. (4) and
(5) in terms of the interactions of certain N̄N states. In the
|JMLS〉 basis of the p̄D states

(6)|JMLS〉 = ∣∣(Lρ ⊗ Lλ)L ⊗ (S12 ⊗ S3)S
〉
JM

we derive(
H0 + WC(λ,ρ) + V 0

NN(ρ) + WS(λ,ρ)
)
Ψ (λ,ρ)

(7)= EΨ (λ,ρ)

with

(8)H0 = P 2
ρ

2Mρ

+ P 2
λ

2Mλ

WC and WS in Eq. (7) are respectively the Coulomb force and
strong interaction between the antiproton and deuteron, and
V 0

NN the interaction between the proton and neutron in the
deuteron core. WC and WS are derived explicitly as

(9)WC(λ,ρ) = 1

2

1∫
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with

(11)VN̄N(�r13) = 1

2
V 0

N̄N
(�r13) + 3

2
V 1

N̄N
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(12)r13 ≡ |�r1 − �r3| =
(

λ2 + ρ2

4
− λρx

)1/2

where x = cos θ with θ being the angle between �λ and �ρ. In
Eq. (10) |P 〉 ≡ |JMLS〉 and |P ′〉 ≡ |JML′S〉 are as defined in
Eq. (6) while the states |Q〉 and |Q′〉 are

(13)|Q〉 = ∣∣(Lσ ⊗ S13)Jσ ⊗ (Lγ ⊗ S2)Jγ

〉
JM

,

(14)|Q′〉 = ∣∣(L′
σ ⊗ S13)Jσ ⊗ (Lγ ⊗ S2)Jγ

〉
JM

.

Here �σ and �γ are also the Jacobi coordinates of the system,
defined as

(15)�γ = �r2 − �r1 + �r3

2
, �σ = �r3 − �r1.

So defined the states |Q〉 and |Q′〉 is based on the consider-
ation that the N̄N interactions can be easily expressed in the
|Jσ Mσ Lσ S13〉 basis of the N̄N states. Note that 〈P |Q〉 depends
on not only the quantum numbers of the states |P 〉 and |Q〉,
but also λ, ρ and the angle θ between �λ and �ρ resulting from
the projection of the orbital angular momenta between different
Jacobi coordinates. We listed the integral kernels in Eq. (10),∑

Q,Q′ 〈P |Q〉〈Q|V (�r13)|Q′〉〈Q′|P ′〉, for the lowest p̄D states
in the approximation that the deuteron core is assumed in the
S-state, as follows:
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