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Abstract

To investigate how quantum effects might modify special relativity, we will study a Lorentz transformation between classical and quantum
reference frames and express it in terms of the four-dimensional (4D) momentum of the quantum reference frame. The transition from the classical
expression of the Lorentz transformation to a quantum-mechanical one requires us to symmetrize the expression and replace all its dynamical
variables with the corresponding operators, from which we can obtain the same conclusion as that from quantum field theory (given by Weinberg’s
formula): owing to the Heisenberg’s uncertainty relation, a particle (as a quantum reference frame) can propagate over a spacelike interval.
© 2007 Published by Elsevier B.V.
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1. Introduction

Special relativity has been developed on the basis of clas-
sical mechanics without taking into account any quantum-
mechanical effect, which implies that some traditional conclu-
sions in special relativity might be modified on condition that
quantum-mechanical effects cannot be ignored. For example,
special relativity tells us that any particle cannot propagate over
a spacelike interval, but according to quantum field theory, such
superluminal behavior does actually exist [1–4]. In particular,
Steven Weinberg has presented a detailed explanation for this
superluminal propagation [5]. In Ref. [5] Weinberg discussed
as follows (with some different notations and conventions).

Although the relativity of temporal order raises no problems
for classical physics, it plays a profound role in quantum the-
ories. The uncertainty principle tells us that when we specify
that a particle is at position x1 at time t1, we cannot also define
its velocity precisely. In consequence there is a certain chance
of a particle getting from (t1,x1) to (t2,x2) even if the space-
time interval is spacelike, that is, |x1 − x2| > c|t1 − t2|. To be
more precise, the probability of a particle reaching (t2,x2) if
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it starts at (t1,x1) is non-negligible as long as (we call Eq. (1)
Weinberg’s formula)

(1)0 < (x1 − x2)
2 − c2(t1 − t2)

2 � (h̄/mc)2,

where h̄ is Planck’s constant (divided by 2π ), c is the velocity
of light in vacuum, and m is the particle’s mass (and then h̄/mc

is the Compton wavelength of the particle). For simplicity, let
t1 = 0, x1 = (0,0,0), t2 = t , and x2 = (x,0,0), for the moment
Weinberg’s formula (1) can be rewritten as (λ̄ ≡ h̄/mc denotes
the Compton wavelength of the particle)

(2)0 > c2t2 − x2 � −(h̄/mc)2 = −λ̄2.

We are thus faced again with our paradox; if one observer
sees a particle emitted at (t1,x1) = (0,0,0,0), and absorbed
at (t2,x2) = (t, x,0,0), and if c2t2 −x2 is negative (but greater
than or equal to −(h̄/mc)2), then a second observer may see
the particle absorbed at x2 = (x,0,0) at a time t2 = t before
the time t1 = 0 it is emitted at x1 = (0,0,0). There is only one
known way out of this paradox. The second observer must see a
particle emitted at x2 = (x,0,0) and absorbed at x1 = (0,0,0).
But in general the particle seen by the second observer will then
necessarily be different from that seen by the first observer (it
is the antiparticle of the particle seen by the first observer). In
other words, to avoid a possible causality paradox, one can re-
sort to the particle–antiparticle symmetry. The process of a par-
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ticle created at (t1,x1) and annihilated at (t2,x2) as observed
in a frame of reference, is identical with that of an antiparti-
cle created at (t2,x2) and annihilated at (t1,x1) as observed in
another frame of reference.

In fact, Weinberg’s formula given by Eq. (1) or (2) comes
from a rough estimate. In Section 3, a more rigorous form of
Weinberg’s formula will be obtained within the framework of
quantum field theory. In this Letter, we will investigate how
quantum effects might modify special relativity by studying
quantum-mechanical Lorentz transformation, from which we
will obtain Weinberg’s formula at the first-quantized level. Our
conclusion is also valid for photon tunneling, because guided
photons inside a waveguide can be treated as massive particles.

2. Quantum-mechanical Lorentz transformation

One can combine special relativity with quantum mechanics
via two different approaches: (1) developing quantum mechan-
ics on the basis of special relativity, one can obtain relativis-
tic quantum theory (including relativistic quantum mechanics
and quantum field theory); (2) developing special relativity on
the basis of quantum mechanics, one might obtain a quantum-
mechanical special relativity. The former has been successful,
while the latter remains to be achieved. Historically, many at-
tempts have been made to investigate how quantum effects
might modify special relativity (e.g., try to apply quantum-
mechanical uncertainty to the reference frames of relativity; try
to extend the concept of macroscopic observers to include that
of quantum observers, etc.) [6–8], a quantum reference frame
defined by a material object subject to the laws of quantum
mechanics has been studied [9–13]. However, these attempts
have not been completely successful. For example, in Ref. [9]
quantum reference frame has been discussed within the frame-
work of non-relativistic quantum theory, such that it has been
concerned with Galilean relativity, instead of Einstein relativ-
ity. Furthermore, to take a “quantum special relativity” as being
a limit of quantum gravity in a similar way Special Relativity
is a limit of General Relativity, Doubly Special Relativity has
been proposed [14–18], whose idea is that there exist in nature
two observer-independent scales, of velocity, identified with the
speed of light, and of mass, which is expected to be of order
of Planck mass. However, even if Doubly Special Relativity is
valid, it does not deviate from the usual Special Relativity un-
less the scale under consideration approaches the Planck scale,
and thus it has nothing to do with our present issue.

Consider that Lorentz transformations are the base of spe-
cial relativity, to investigate how quantum effects might modify
special relativity, we will study a Lorentz transformation be-
tween classical and quantum reference frames and express it in
terms of the four-dimensional (4D) momentum of the quantum
reference frame.

Consider two inertial reference frames S and S′ with a rel-
ative velocity v = (v,0,0) between them. We shall denote ob-
servables by unprimed variables when referring to S, and by
primed variables when referring to S′, and then the time and
space coordinates of a point are denoted as (t, x, y, z) and
(t ′, x′, y′, z′) in the frames S and S′, respectively. The coor-

dinate axes in the two frames are parallel and oriented so that
the frame S′ is moving in the positive x direction with speed
v > 0, as viewed from S. Let the origins of the coordinates in S

and S′ be coincident at time t = t ′ = 0. All statements here are
presented from the point of view of classical mechanics, or, in
other words, they are valid in the sense of quantum-mechanical
average.

From the physical point of view, a frame of reference is de-
fined by a material object of the same nature as the objects
that form the system under investigation and the measuring in-
struments [10]. If the mass of the material object is finite, the
corresponding reference frame (say, quantum reference frame)
would be subject to the laws of quantum mechanics, and the
interaction between object and measuring device might not be
neglected. In particular, Heisenberg’s uncertainty relations for-
bid the exact determination of the relative position and velocity
of quantum reference frame. For simplicity, we assume that the
interaction between a physical system and measuring device is
so small that all quantum reference frames can approximatively
be regarded as inertial ones (they are inertial ones in the sense
of quantum-mechanical average).

To study whether a particle can propagate over a spacelike
interval, we assume that the frame S′ is attached to a parti-
cle Q with rest mass m (i.e., a quantum-mechanical object of
finite mass), such that the frame S′ can be regarded as consist-
ing of a measuring device and the particle Q. For simplicity,
we assume that the mass of the measuring device can be ig-
nored as compared with that of the particle Q. As a result,
the frame S′ can approximatively be defined by the particle Q

with rest mass m, wherein a Cartesian coordinate system is cho-
sen in such a manner that the coordinates of the particle Q is
(t ′, x′,0,0) as viewed in S′, and is (t, x,0,0) as viewed in the
frame S.

On the other hand, for convenience we assume that the frame
S has an infinite mass. In other words, the frame S is a classical
reference frame while the frame S′ is a quantum one. For sim-
plicity, from now on we will omit the y- and z-axes. According
to the Lorentz transformation one has

(3)

{
x′ = (x − vt)/

√
1 − (v2/c2),

t ′ = [t − (vx/c2)]/√1 − (v2/c2).

Because the frame S′ is attached to the particle Q, let p =
(p,0,0) and E denote the momentum and energy of the par-
ticle Q as observed in the frame S, respectively, then p =
Ev/c2 > 0. In other words, as observed in S, the particle Q

has the 4D momentum (E,p,0,0) and the 4D coordinate
(t, x,0,0). Using E2 = p2c2 + m2c4 and v = pc2/E, Eq. (3)
can be rewritten as

(4)

{
x′ = (Ex − c2pt)/mc2,

t ′ = (Et − px)/mc2.

As we know, the transition from the classical expression (4)
to a quantum-mechanical one requires us to symmetrize Eq. (4)
and replace all its variables with the corresponding operators, in
such a way we formally give a quantum Lorentz transformation
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