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Abstract

The quantum collapse of a self-gravitating thin shell in the minisuperspace models is revisited on the assumption that the shell is composed
of N distinguishable identical particles. The ground state of the shell is found and defined as a quantum black hole (QBH). We show that the
energy of single particle in the QBH is dependent on N , and N has an up-limit for a stable QBH. The effective exciting energy of single particle
is determined, which is universally 1/

√
2 of the Planck energy for the full-filled QBHs. We also propose a simple statistical model of QBH and

show that a QBH is full-filled at low temperatures and half-filled at high temperatures. The specific heat of QBH is found to be positive at low
temperatures and the relation of the QBH mass with its temperature is obtained in the high-temperature limit of our model.
© 2006 Elsevier B.V. All rights reserved.
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The classical theory of gravity, general relativity, is suffered
from the problems of singularities, where our present laws of
physics break down [1]. It is believed that the singularities
could be avoided when quantum effects are considered. A self-
gravitating thin shell may be the simplest model of gravitational
collapse, and it can be in a sense regarded as a touchstone for
any quantum theories of gravity since they should provide at
least a correct quantum collapse scenario for this simplest case.
In this Letter, the quantum collapse of a self-gravitating thin
shell is revisited and a statistical model of quantum black hole
is proposed.

In general relativity, the collapse of a self-gravitating thin
shell was first investigated by Israel [2,3]. The world sheet of
the thin shell separates the space–time into two parts: the inside
described by Minkowskian metric, and the outside by Schwarz-
schild metric. Einstein’s field equations imply the equation of
motion for the shell:

(1)E = Mc2
[

1 +
(

1

c

dR

dτ

)2]1/2

− GM2

2R
,
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where τ is the proper time along the shell of radius R and rest
mass M , c is the speed of light, and G denotes the gravitational
constant [3]. One can also choose the Minkowskian time in the
flat space inside the shell as time variable, as first proposed by
Kuchar [4], then Eq. (1) can be written in a suggestive form

(2)E = Mc2
[

1 −
(

1

c

dR

dt

)2]−1/2

− GM2

2R
,

where t denotes the time inside the shell. We note that Eq. (2)
gives just the energy of a relativistic particle of rest mass M ,
which moves radially in a potential −GM2/2R.

The quantum collapse of a self-gravitating thin shell was
studied in the minisuperspace models by many authors [5–
10]. Different choices of time lead to different quantum theo-
ries, which are not unitarily equivalent to each other [6,7,11].
Choosing the time along the shell as time variable, Berezin et
al. proposed a theory with novel Hamiltonian and difference
Schrödinger equation [5]. Choosing the time inside the shell as
time variable, Hajicek, Kay and Kuchar (HKK) suggested an-
other theory with a more natural and elegant form in [6], where
the problem was reduced to the s-wave Klein–Gordon equa-
tion in a “Coulomb potential”. The bound states obtained in the
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HKK model have the form of the Sommerfeld spectrum of a
relativistic scalar hydrogen atom, which exist only if the rest
mass of the shell is no more than one Planck mass.

In this Letter, we will choose the Minkowskian time in
the flat space inside the shell as time variable following [6].
Such a choice is due to the heuristic relationship between self-
gravitating thin shells and atoms implied by the HKK model as
well as the consideration of mathematical simplicity. Another
problem of minisuperspace models is that when most of the
degrees of freedom are frozen, some property of the original
system may be destroyed. For example, the thermodynamics of
the system is lost [7,11]. In this Letter, we will revisit the HKK
model on the assumption that the shell is composed of N iden-
tical particles.

Consider a thin shell composed of N identical particles with
purely gravitational interaction and same radial motion. Using
the time inside the shell as time variable, one can obtain from
Eq. (2) the equations of motion for every particle:

(3)Ei = mc2
[

1 −
(

1

c

dri

dt

)2]−1/2

− NGm2

2ri
,

where Ei = E/N , m = M/N , ri = R denote energy, rest mass
and radial coordinate of the ith particle, respectively, and i =
1,2, . . . ,N . The classical motion of the ith particle is generated
by the Hamiltonian

(4)Hi =
√

(pic)2 + (
mc2

)2 − NGm2

2ri
,

where pi denotes the radial momentum of the ith particle. The
Hamiltonian for the shell is

(5)H =
N∑

i=1

Hi =
N∑

i=1

[√
(pic)2 + (

mc2
)2 − NGm2

2ri

]
.

Thus the shell can be regarded as a system of N non-interacting
identical relativistic particles moving radially in a potential
−NGm2/2r , and the mathematical similarity between self-
gravitating thin shells and relativistic scalar hydrogen atoms in
the HKK model remains.

The quantum theory of the self-gravitating thin shell can be
developed if one quantizes the classical system governed by
Hamiltonian (5). For simplicity, here we assume that the iden-
tical particles are distinguishable and the interaction between
them is purely gravitational, ignore the spins of the identical
particles, and confine our attention to the bound states. From
the quantum Hamiltonian corresponding to classical Hamil-
tonian (4), following [6], one can reduce the problem to the
s-wave Klein–Gordon equation in a “Coulomb potential” and
obtain the energy levels for bound s-states of single particle,
which have the form of the Sommerfeld spectrum of a relativis-
tic scalar hydrogen atom with l = 0 [12]:

(6)εn(N) = mc2
[

1 + N2α2

(n + 1
2 + [( 1

2 )2 − N2α2]1/2)2

]−1/2

.

Here n = 0,1,2, . . . and an effective fine structure constant is
introduced by α = Gm2/2h̄c. Eq. (6) with n = 0 yields the

ground state energy of single particle:

(7)ε0(N) = mc2
[

1 + N2α2

( 1
2 + [( 1

2 )2 − N2α2]1/2)2

]−1/2

.

Since the N distinguishable identical relativistic particles have
same radial motion in the classical theory, they should occupy
same single-particle state in the quantum theory. Therefore the
shell in its ground state is composed of N identical particles in
single-particle ground state. In this Letter, we briefly call the
shell in its ground state “quantum black hole” (QBH), which
may be regarded as the quantum correspondence to the rem-
nants of classical gravitational collapse. Evidently the energy
of a QBH is given by

(8)E(N) = Nε0(N).

There are two noticeable features of the QBH: the single-
particle energy ε0 is dependent on number of identical parti-
cles N , and ε0 turns out to be complex for N > 1/2α which
means a QBH will be unstable then. Firstly, we confine our at-
tention to the case N � 1/2α.

The maximum number of identical particles in a stable QBH
can be defined by Nmax ≡ 1/2α. If we parameterize the “fill-
ing factor” N/Nmax by N/Nmax = sin θ , Eq. (7) can be greatly
simplified as

(9)ε0(θ) = mc2 cos(θ/2).

Since Nmax ≡ 1/2α � 1 and α = Gm2/2h̄c, we have
Nmax = (mP /m)2 and m �

√
h̄c/G = mP , which suggest that

the large Nmax corresponds to the small m and a QBH can be
formed only by identical particles of rest mass no more than one
Planck mass. In the following discussion we assume m � mP ,
thus the parameter θ can be treated as a continuous variable.
As an application of Eq. (9), one can obtain that for a full-
filled QBH (θ = π/2), ε0 = mc2/

√
2, and for a half-filled one

(θ = π/6), ε0 = cos(π/12)mc2.
The mass of a QBH can be defined by

(10)M = E/c2 = m2
P

m
sin θ cos(θ/2).

Evidently M is inversely proportional to m for given filling
factor. One can find that M reaches its maximum at sin θ =
N/Nmax = 2

√
2/3 for given small m. The result is universal

for m � mP . The case of large m is also interesting. For ex-
ample, M = mP /

√
2 for (m = mP , N = Nmax = 1), which

gives the smallest mass of a full-filled QBH, and M = mP for
(m = mP /

√
2, N = Nmax = 2), corresponding to a full-filled

QBH with just one Planck mass. One can also find that M

reaches its maximum at full filling for Nmax � 13.
Following the same analysis in the HKK model [6] one can

estimate the size of a QBH from the wave function of single-
particle ground state ψ0(�r). For θ → 0, the wave function is
similar to that of a non-relativistic hydrogen atom and the size
of the QBH is simply given by “Bohr radius”, r0 = λ̄C/Nα.
Here λ̄C = h̄/mc, denotes the Compton wavelength of the
identical particle. It is obvious that r0 is much larger than rS ,
Schwarzschild radius of the QBH in this case. As θ increases,
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