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In this Letter we investigate cosmological dynamics on the normal branch of a DGP-inspired scenario
within a phase space approach where induced gravity is modified in the spirit of f (R)-theories. We
apply the dynamical system analysis to achieve the stable solutions of the scenario in the normal DGP
branch. Firstly, we consider a general form of the modified induced gravity and we show that there is a
standard de Sitter point in phase space of the model. Then we prove that this point is stable attractor
only for those f (R) functions that account for late-time cosmic speed-up.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There are many astronomical evidences supporting the idea
that our universe is currently undergoing a speed-up expan-
sion [1]. Several approaches are proposed in order to explain the
origin of this novel phenomenon. These approaches can be classi-
fied in two main categories: models based on the notion of dark
energy which modify the matter sector of the gravitational field
equations and those models that modify the geometric part of
the field equations generally dubbed as dark geometry in litera-
ture [2,3]. From a relatively different viewpoint (but in the spirit of
dark geometry proposal), the braneworld model proposed by Dvali,
Gabadadze and Porrati (DGP) [4] explains the late-time cosmic
speed-up phase in its self-accelerating branch without recourse
to dark energy [5]. However, existence of ghost instabilities in this
branch of the solutions makes its unfavorable in some senses [6].
Fortunately, it has been revealed recently that the normal, ghost-
free DGP branch has the potential to explain late-time cosmic
speed-up if we incorporate possible modification of the induced
gravity in the spirit of f (R)-theories [7]. This extension can be
considered as a manifestation of the scalar-tensor gravity on the
brane. Some features of this extension are studied recently [8,9].

Within this streamline, in this Letter we study the phase space
of the normal DGP cosmology where induced gravity is modified
in the spirit of f (R)-theories. We apply the dynamical system
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analysis to achieve the stable solutions of the model. To achieve
this goal, we firstly consider a general form of the modified in-
duced gravity. We obtain fixed points via an autonomous dynami-
cal system where the stability of these points depends explicitly on
the form of the f (R) function. There are also de Sitter phases, one
of which is a stable phase explaining the late-time cosmic speed-
up. Secondly, in order to determine the stability of critical points
and for the sake of clarification, we specify the form of f (R) by
adopting some cosmologically viable models. The phase spaces of
these models are analyzed fully and the stability of critical points
are studied with details.

2. DGP-inspired f (R) gravity

2.1. The basic equations

Modified gravity in the form of f (R)-theories are derived by
generalization of the Einstein–Hilbert action so that R (the Ricci
scalar) is replaced by a generic function f (R) in the action

S =
∫

d4x
√−g

(
f (R)

2κ2
+ Lm

)
, (1)

where Lm is the matter Lagrangian and κ2 = 8πG . Varying this
action with respect to the metric gives

Gμν = κ2T (tot)
μν = κ2(T (m)

μν + T ( f )
μν

) = κ2 T̃ (m)
μν + T̃ ( f )

μν

f ′ (2)
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where T̃ (m)
μν = diag(ρ,−p,−p,−p) is the stress-energy tensor for

standard matter, which is assumed to be a perfect fluid and by
definition f ′ ≡ df

dR . Also T̃ ( f )
μν is the stress-energy tensor of the cur-

vature fluid that is defined as follows

T̃ ( f )
μν = 1

2
gμν

[
f (R) − R f ′] + f ′ ;αβ(gαμgβν − gαβ gμν). (3)

By substituting a flat FRW metric into the field equations, one
achieves the analogue of the Friedmann equations as follows [10]

3 f ′H2 = κ2ρm +
[

1

2

(
f (R) − R f ′) − 3H ḟ ′

]
, (4)

−2 f ′ Ḣ = κ2ρm + Ṙ2 f ′′′ + (R̈ − H Ṙ) f ′′, (5)

where a dot marks the differentiation with respect to the cosmic
time. In the next step, following [9] we suppose that the induced
gravity on the DGP brane is modified in the spirit of f (R) gravity.
The action of this DGP-inspired f (R) gravity is given by

S = 1

2κ3
5

∫
d5x

√−gR+
∫

d4x
√−q

(
f (R)

2κ2
+ Lm

)
, (6)

where g AB is the five dimensional bulk metric with Ricci scalar R,
while qab is induced metric on the brane with induced Ricci
scalar R . The Friedmann equation in the normal branch of this sce-
nario is written as [9]

3 f ′H2 = κ2(ρm + ρ( f )) − 3H

rc
, (7)

where rc = G(5)

G(4) = κ2
5

2κ2 is the DGP crossover scale with dimension
of [length] and marks the IR (infra-red) behavior of the DGP model.
The Raychaudhuri equation is written as follows

Ḣ

(
1 + 1

2Hrc f ′

)
= −κ2ρm

2 f ′ − Ṙ2 f ′′′ + (R̈ − H Ṙ) f ′′

2 f ′ . (8)

To achieve this equation we have used the continuity equation for
ρ( f ) as

ρ̇( f ) + 3H

(
ρ( f ) + p( f ) + Ṙ f ′′

rc( f ′)2

)
= κ2ρm Ṙ f ′′

( f ′)2
, (9)

where the energy density and pressure of the curvature fluid are
defined as follows

ρ( f ) = 1

κ2

(
1

2

[
f (R) − R f ′] − 3H ḟ ′

)
, (10)

p( f ) = 1

κ2

(
2H ḟ ′ + f̈ ′ − 1

2

[
f (R) − R f ′]). (11)

After presentation of the required field equations, we analyze
the phase space of the model fully to explore cosmological dy-
namics of this setup.

2.2. A dynamical system viewpoint

The dynamical system approach is a convenient tool to describe
dynamics of cosmological models in phase space. In this way, we
rewrite Eq. (7) in a dimensionless form as

1 = ρm

3H2 f ′ − 1

Hrc f ′ + f (R)

6H2 f ′ − R

6H2
− ḟ ′

H f ′ . (12)

In the present study, we firstly consider a generic form of the f (R)

function, so that one can define the dynamical variables indepen-
dent of the specific form of the f (R) function as follows (see for

instance Ref. [10])

x1 = ρm

3H2 f ′ , x2 = − 1

Hrc f ′ , x3 = f

6H2 f ′ ,

x4 = − R

6H2
, x5 = − ḟ ′

H f ′ . (13)

Also we define the following quantities

m ≡ d ln f ′

d ln R
= R f ′′

f ′ , (14)

r ≡ −d ln f

d ln R
= − R f ′

f
= x4

x3
. (15)

We note that a constant value of m leads to the models with
f (R) = ξ1 + ξ2 R1+m where the parameter m shows the deviation
of the background dynamics from the standard model and ξ1 and
ξ2 are constants. However, in general the parameter m depends on
R and R itself can be expressed in terms of the ratio r = x4

x3
. This

means that m is a function of r, that is, m = m(r). Based on the
new variables, the Friedmann equation becomes a constraint equa-
tion so that we can express one of these variables in terms of the
others. Introducing a new time variable τ = ln a = N and eliminat-
ing x1 (by using the Friedmann constraint equation) we obtain the
following autonomous system

dx2

dN
= x2(x5 + x4 + 2), (16)

dx3

dN
= − x4x5

m
+ x3(2x4 + x5 + 4), (17)

dx4

dN
= x4x5

m
+ x4(2x4 + 4), (18)

dx5

dN
= (x2 + x5)(x5 + x4) + 1 − 3x3 − 5x4 − 2x2, (19)

and

x1 ≡ Ωm = 1 − x2 − x3 − x4 − x5. (20)

The deceleration parameter which is defined as q = −1 − Ḣ
H2 ,

now can be expressed as

q = 1 + x4, (21)

and the effective equation of state parameter of the system is de-
fined by

ωeff = −1 − 2Ḣ

3H2
. (22)

2.3. Critical points and their stability

The critical points of the scenario and some of their properties
are listed in Table 1. In this table, Γ is defined as

Γ ≡ 1

2

4m2 − 9m + 2 ± √−160m4 + 272m3 − 111m2 + 4m + 4

2m2 − 3m + 1
.

We consider only the plus sign of this equation in our forthcoming
arguments. The minus sign does not create suitable cosmological
behavior since it leads to weff < −10 or weff > 0.7 for point E .

In Table 1, the critical points A, B and C are independent of
the form of f (R). Nevertheless, the stability of these points de-
pends on the form of f (R) explicitly. The critical curve D exists
just for f (R) models with m(r = − 1

2 ) = 1
2 (for instance, in models

of the form f (R) = R + γ R−n that m is defined as m(r) = −n(1+r)
r ,

the critical curve D exists just for n = 1
2 ). The value of the effective
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