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We study the asymptotic scaling properties of standard domain wall networks in several cosmological
epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size
20483, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The
simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model
for domain walls: we numerically determine the two free model parameters to have the values cw =
0.34 ± 0.16 and kw = 0.98 ± 0.07, which are of higher precision than (but in agreement with) earlier
estimates.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A key consequence of cosmological phase transitions is the
formation of topological defects [1,2]. While cosmic strings have
attracted most of the community’s attention, domain walls are
useful as a testbed case with which one can gather information
relevant for other more complex defects (despite being tightly con-
strained by observations [3,4]). Here we take advantage of ever-
improving computing resources to carry out a large set of 20483

high-resolution simulations of domain walls, using the standard
Press–Ryden–Spergel (PRS) algorithm [5]. This is a follow-up on
[6], where the results of simulations of size up to 10243 were pre-
sented, and we confirm and expand their results.

Early generations of domain wall simulations [5,7–13] found
some hints for late-time deviations from the scale-invariant evolu-
tion, which would be the expected behavior [14,12]. Our previous
work [6] found no such deviations, which provided support for the
hypothesis that the earlier results were simply a consequence of
the limited dynamical range of numerical simulations. We believe
that the present work clearly confirms this.

Macroscopic properties of defect networks can be accurately
described by an analytic velocity-dependent model, first derived

* Corresponding author.
E-mail addresses: up080322016@alunos.fc.up.pt (A.M.M. Leite),

Carlos.Martins@astro.up.pt (C.J.A.P. Martins), E.P.S.Shellard@damtp.cam.ac.uk
(E.P.S. Shellard).

for cosmic strings [15–17]. The large-scale features of the network
are described by a characteristic scale L (which one can inter-
changeably think of as a typical defect separation or correlation
length) and a microscopically averaged (root-mean-squared) ve-
locity v . This has the advantages of tractability and conceptual
simplicity but must include phenomenological parameters which
parametrize our ignorance about certain dynamical mechanisms.
The only way to accurately determine the correct values of these
parameters is by employing large-scale numerical simulations to
calibrate them. The main goal of the current work is precisely to
improve this calibration.

2. Numerical simulations

We will study simple (single-field) domain wall networks in flat
homogeneous and isotropic Friedmann–Robertson–Walker (FRW)
universes. (Throughout the Letter we shall use fundamental units,
in which c = h̄ = 1.) A scalar field φ with Lagrangian density

L = 1

2
φ,αφ,α − V 0

(
φ2

φ2
0

− 1

)2

, (1)

provides the simplest case. By standard variational methods we
obtain the field equation of motion (written in terms of physical
time t)

∂2φ

∂t2
+ 3H

∂φ

∂t
− ∇2φ = −∂V

∂φ
. (2)
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Fig. 1. The evolution of the velocity and density ratios (Rγ v and Rρ , defined in the text) for the average of two sets of ten 10243 matter era simulations with W0 = 100 and
W0 = 10. As expected, both ratios become unity after a transient period.

where ∇ is the Laplacian in physical coordinates, H = a−1(da/dt)
is the Hubble parameter and a is the scale factor, which we gener-
ically assume to vary as a ∝ tλ . In what follows we will study the
network’s evolution in several such cosmological epochs.

We follow the procedure of Press, Ryden and Spergel [5], mod-
ifying the equations of motion in such a way that the thickness of
the domain walls is fixed in co-moving coordinates. The reliabil-
ity of this method has been numerically tested in previous work
[5,11,18]. In the PRS method, Eq. (2) becomes:

∂2φ

∂η2
+ α

(
d ln a

d lnη

)
∂φ

∂η
− ∇2φ = −aβ ∂V

∂φ
, (3)

where η is the conformal time and α and β are constants: β = 0
is used in order to have constant co-moving thickness and α = 3
is chosen to require that the momentum conservation law of the
wall evolution in an expanding universe is maintained [5]. The spe-
cific parameters used in the simulations are φ0 = 1, V 0 = π2/2W 2

0 ,
where W0 = 10 is the wall thickness; these choices are also justi-
fied by previous work on this algorithm [5,11,18].

Despite these previous results one may wonder whether the
chosen wall thickness is sufficient to accurately calibrate the
model. Fig. 1 compares two series of ten 10243 matter era runs
with W0 = 10 and W0 = 100. Plotted are the ratios of the
network velocities (Rγ v = (γ v)W0=100/(γv )W0=10) and densities
(Rρ = (ρ)W0=100/(ρ)W0=10). After transients due to the choices of
initial conditions, both of these ratios converge to unity, with sta-
tistical uncertainties well below 10%. This convergence is expected
to be stronger with larger ensembles and/or larger boxes.

Eq. (3) is integrated using a standard finite-difference scheme.
We assume the initial value of φ to be a random variable between
−φ0 and +φ0 and the initial value of ∂φ/∂η to be zero. This will
lead to large energy gradients in the early timesteps of the simu-
lation, and the network needs some time (which is proportional to
the wall thickness) to wash away these initial conditions. Our sim-
ulations start at a conformal time η0 = 1 and evolve in timesteps
�η = 0.25η0 until a conformal time equal to half the box size (that
is, η = 1024).

The conformal time evolution of the co-moving correlation
length of the network ξc (specifically A/V ∝ ξ−1

c , A being the co-
moving area of the walls) and the wall velocities (specifically γ v ,
where γ is the Lorentz factor) are directly measured from the sim-
ulations, using techniques previously described in [12]. However
here we use a newly parallelized version of the code, optimized

for the Altix UV1000 architecture of the COSMOS Consortium’s su-
percomputer.

3. Analytic model

In order to model a defect network one starts from the mi-
croscopic equations of motion (the Nambu–Goto equations, in the
case of strings) and, through a suitable averaging, arrives at ‘ther-
modynamic’ evolution equations. The non-trivial part of this pro-
cedure is the inclusion of terms to account for defect interactions
and energy losses. Such terms must be added in a phenomeno-
logical way, and for their calibration one must resort to numerical
simulations.

For cosmic strings, this procedure leads to the velocity-depend-
ent one-scale (VOS) model [15–17], which has been thoroughly
tested against simulations. One can follow an analogous procedure
both for the case of monopoles [19] and for domain walls. This lat-
ter case was first studied in [12], and more recently [6] provided a
preliminary calibration; here we will provide a more quantitative
one.

The evolution equation for the characteristic wall length scale L
(which is related to the wall density ρw via L = σ/ρw , where σ is
the domain wall energy per unit area) and their RMS velocity v ,
are as follows

dL

dt
= (

1 + 3v2)H L + cw v, (4)

dv

dt
= (

1 − v2)(kw

L
− 3H v

)
. (5)

Here cw and kw are the free parameters: the former quantifies
energy losses, while the latter quantifies the (curvature-related)
forces acting on the walls. To a first approximation, these are ex-
pected to be constant. Note that in the context of the VOS model
the characteristic length scale L can further be identified with the
physical correlation length ξphys . The co-moving version of this was
defined in the previous section, and the two are related via

ξphys = aξc, (6)

and we are therefore assuming that ξphys ≡ L. Note that if

ξc ∝ η1−δ, (7)

then, for an expansion rate λ defined as before,

ξphys ∝ t1−δ(1−λ). (8)
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