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The photo-production of a pair of scalar particles in the presence of an intense, circularly polarized laser
beam is investigated. Using the optical theorem within the framework of scalar quantum electrodynamics,
explicit expressions are given for the pair production probability in terms of the imaginary part of the
vacuum polarization tensor. Its leading asymptotic behavior is determined for various limits of interest.
The influence of the absence of internal spin degrees of freedom is analyzed via a comparison with the
corresponding probabilities for production of spin-1/2 particles; the lack of spin is shown to suppress the
pair creation rate, as compared to the predictions from Dirac theory. Potential applications of our results
for the search of minicharged particles are indicated.
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1. Introduction

Understanding the nonlinear and unstable nature of the quan-
tum vacuum in the presence of a strong electromagnetic field
constitutes an important task of theoretical physics. Correspond-
ing studies have revealed a nontrivial vacuum structure, suit-
able to explore the low-energy frontier of particle physics [1–3].
Moreover, perspectives of achieving ultrahigh field intensities
(I ∼ 1026 W/cm2) in short laser pulses of few femtoseconds dura-
tion [4,5] have motivated a growing interest in the phenomenology
purely associated with the quantum nature of the electromagnetic
interaction (see [6,7] for recent reviews). This is because the envis-
aged laser field strengths lie only 1–2 orders of magnitude below
the critical value Ec = 1.3 × 1016 V/cm where QED vacuum non-
linearities become substantial and spontaneous vacuum decay into
electron–positron (e−e+) pairs via the Schwinger mechanism is
expected to occur [8–10].

In combination with an incident high-energy particle, strong
laser fields can induce e−e+ pair production already at intensi-
ties available today. In a pioneering experiment at SLAC [11], a
multi-GeV photon decayed into a pair while propagating through
a moderately intense laser pulse (I ∼ 1018 W/cm2). This pro-
cess, involving the simultaneous absorption of several laser pho-
tons, represents a nonlinear version of the well-known Breit–
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Wheeler reaction [12–14]. The high-energy non-laser photon origi-
nated from Compton backscattering of SLAC’s ultrarelativistic elec-
tron beam off the laser pulse. In the near future, corresponding
studies can be conducted within all-optical setups using laser-
accelerated relativistic electrons as projectiles [15]. Other pair pro-
duction mechanisms may be probed in ultrarelativistic proton–
laser collisions [16–20].

In view of the upcoming high-field laboratories [4,5], theoreti-
cians are currently investigating further properties and applications
of photo-induced e−e+ pair production in intense laser fields. For
example, due to their broad frequency composition, laser pulses of
ultrashort duration have been shown to modify the created par-
ticle spectra [21] and lead to characteristic enhancements in the
pair production probability [22,23]. Photo-induced pair production
also plays a crucial role for the development of QED cascades
which may give rise to e−e+ plasmas of very high density [24,25].
The nonlinear Breit–Wheeler process moreover offers a promising
means to measure ultrashort γ -ray pulses via e−e+ streaking [26].
Superimposing the field of a high-energy photon onto a strong
electric field may also help catalyzing the Schwinger effect [27–
29].

In the present Letter, we study the photo-induced creation of a
pair of spin-0 particles in the presence of a strong monochromatic
laser beam. Our motivation is twofold. First, while the probabilities
for the creation of fermion pairs are known for a long time [13,14],
it is relevant to establish the corresponding formulas for scalar
particles because they can be useful for the ongoing search of
minicharged particles which may have either fermionic or bosonic
character [2,3,30]. Second, our results provide insights into the
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fundamental question as to how the spin degree of freedom af-
fects the photo-induced pair production process. To this end, a
comparison with the known results for fermion pair production
will be drawn. Such an information complements previous works
where spin-resolved calculations of the nonlinear Breit–Wheeler
process via helicity amplitudes [31] and the internal spin polariza-
tion vector [32] were performed. We note besides that comparative
studies between the behavior of bosonic and fermionic particles
in strong laser fields have recently been carried out with respect
to Compton, Mott and Kapitza–Dirac scattering [6,33,34], nonlinear
Bethe–Heitler pair creation in proton–laser collisions [35] and the
Klein paradox [36,37].

Our theoretical approach relies on the polarization tensor
Πμν(k1,k2), of scalar Quantum Electrodynamics (in the one-loop
approximation) in the presence of a strong laser field [38,39]
whose imaginary part is related to the pair production probability
of scalar particles via the optical theorem. While the polarization
tensor for Dirac fermions has already been exploited successfully
to calculate various e−e+ pair production processes in strong laser
fields [18,19,38], to the best of our knowledge the present calcula-
tions represent the first application of the corresponding polariza-
tion tensor for the scalar case.

2. General considerations

To begin with, let us consider the field of a plane electromag-
netic wave of the form1

A μ(x) = aμ
1 ψ1(�x) + aμ

2 ψ2(�x), (1)

with a1,2 denoting the wave amplitudes and ψ1,2 being arbitrary
functions. The wave four-vector �μ = (�0,�) fulfills the relations
�2 = 0 and �a1 = �a2 = a1a2 = 0. According to [38,39], the vacuum
polarization tensor in this field,
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can be expanded in terms of a basis set of Lorentz covariant vec-
tors Λ
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i which are constructed from fundamental symmetry prin-

ciples. They are explicitly given by
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Here F
μν
i = �μaν

i − �νaμ
i (i = 1,2) are the amplitudes of the

external field modes whereas k1 and k2 denote the incoming
and outgoing four-momenta of the probe photons, respectively.
We note that the short-hand notation k in Eq. (3) may stand
for either k1 or k2. It is worth mentioning at this point that,
for k = k1, the vectors Λ1(k1), Λ2(k1) and Λ3(k1) are orthog-
onal to each other, Λ

μ
i (k1)Λ jμ(k1) = −δi j , and fulfill the com-

pleteness relation gμν − kμ
1 kν

1
k2

1
= −∑3

i=1 Λ
μ
i (k1)Λ

ν
i (k1) with gμν =

diag(+1,−1,−1,−1) denoting the metric tensor. A similar state-
ment applies if the set of vectors Λ1(k2), Λ2(k2) and Λ4(k2) are
considered. We emphasize that Eq. (2) does not depend on which
choice of k is taken since the difference between k1 and k2 is pro-
portional to � [see Eq. (5) below].

1 From now on “natural” and Gaussian units c = h̄ = 4πε0 = 1 are used.

The form factors ci in Eq. (2) are distribution-valued func-
tions which depend on the field shape via the functions ψi . They
have been evaluated thoroughly for the case of spin- 1

2 particles in
[38,39]. Also for the case when the virtual charge carriers in the
Feynman loop are spin-0 particles general expressions for the ci
were provided in these references; but these formulas were not
further evaluated.

Using the general expressions from [38,39] and assuming that
the laser field is an elliptically polarized wave with

ψ1 = cos(�x) and ψ2 = sin(�x), (4)

we find that the form factors in Eq. (2) for the scalar case are given
by
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Here, α = e2 is the fine structure constant, e and m denote the
particle charge and mass, respectively, and

λ = �k

2m2
, ξ2

i = −e2a2
i

m2
(i = 1,2). (6)

As Eq. (5) shows, the polarization tensor decomposes into elastic
(k1 = k2) and inelastic (k1 �= k2) parts. Those terms which contain
the Dirac deltas δ4(k1 − k2 + 2N�) with N �= 0 are responsible for
the inelastic scattering of a photon in the field of the wave. For
our purposes, however, only the elastic part is relevant. The cor-
responding functions d(0)

i , i = 1,2,3,4,5, contained in Eq. (5) are
given by
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where J0(z) is the Bessel function of zero order and J ′
0(z) its

derivative. The remaining parameters are
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and A1 = A + 2A0.
A substantial simplification is achieved when the external field

is taken as a circularly polarized wave (ξ1 = ξ2 = ξ ). In this case,
we find it convenient to express the elastic contribution as

Π
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