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We propose a general framework for the numerical study of balanced black rings for any spacetime
dimensions d � 5. Numerical solutions are constructed in a systematic way for d = 6, by solving the
Einstein field equations with suitable boundary conditions. These black rings have a regular event horizon
with S1 × S3 topology, and they approach the Minkowski background asymptotically. We analyze their
global and horizon properties.
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1. Introduction

In 4 dimensions the stationary, asymptotically flat vacuum black
holes (BHs) are given by the Kerr family. A spatial section of their
event horizon has the topology of a two-sphere S2. The Kerr BHs
are uniquely characterized by their mass and angular momentum;
thus these two numbers suffice to completely specify a vacuum BH
spacetime.

The generalizations of the Kerr BHs to d � 5 dimensions were
found by Myers and Perry (MP) [1]. Their global charges are the
mass and N = �(d − 1)/2� independent angular momenta. Their
horizon topology is that of a (d − 2)-sphere Sd−2. However, pre-
senting heuristic arguments, Myers and Perry argued that in higher
dimensions also black rings (BRs) might exist, and thus black ob-
jects with a different horizon topology.

In 2001 Emparan and Reall found such BR solutions in 5 dimen-
sions. These are asymptotically flat and possess a horizon topology
S2 × S1 [2]. Considering singly rotating BRs, Emparan and Reall
showed that, for fixed mass, there are two branches of balanced
black rings, a branch of thin black rings and a branch of fat black
rings. These two branches merge at a minimal value of the angu-
lar momentum j, where their horizon area aH exhibits a cusp. This
minimal value of j of the BRs is smaller than the maximal value
of j of the MP BHs. Thus, within the range jB R

min < j < jM P
max, for

given global charges 3 distinct solutions exist. Clearly, uniqueness
is violated for these 5-dimensional stationary vacuum solutions.

The discovery of the BRs spurred a lot of interest in BH so-
lutions in higher dimensions. With many more solutions found,
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such as, in particular, composite objects of BHs and BRs, an in-
triguing phase diagram of vacuum black objects in 5 dimensions
emerged (see e.g. [3,4] for reviews of these aspects). In more than
5 dimensions, however, exact solutions of BRs or composite black
objects could not yet be obtained, since no general analytic frame-
work seems to exist for the construction of black objects with
nonspherical horizon topology in d > 5.

A heuristic way to construct BRs is to bend a Schwarzschild
black string and then achieve balance by spinning it along the S1

direction [2]. This may be considered as the underlying picture for
approximate techniques, such as the method of matched asymp-
totic expansion [5,6]. Here the central assumption is that some
black objects, in certain ultra-spinning regimes, may be approxi-
mated by thin black strings or branes, curved into a given shape
and boosted appropriately.

For BRs in d > 5 dimensions this approach has led to approx-
imate solutions, valid for configurations with a sufficiently large
radius of the ring [5]. However, this approach cannot capture fea-
tures that are expected to occur at moderate values of the angular
momentum, where the radius of the S1 of the ring is no longer
large as compared to the radius of the Sd−3-sphere. Thus, in par-
ticular, it cannot deal with the conjectured transition of BRs to
BHs with spherical horizon topology [5], i.e., the transition to the
branch of pinched black holes emerging from a point of instability
of the MP BHs [7,8].

In this work we propose a different approach to the construc-
tion of d > 5 vacuum BRs, by solving numerically the Einstein
equations with suitable boundary conditions. Numerical results are
shown for d = 6, which allow us to confirm the thin BR part of the
phase diagram proposed in [5] and, in addition, to find a branch of
fat BRs, which extends towards a horizon topology changing solu-
tion.
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2. A new coordinate system

A main difficulty in the construction of BR solutions is to find
an appropriate coordinate system. The numerical solutions in this
work are found for a parametrization of D-dimensional flat space
(with D = d − 1)

ds2
D = V 1

(
dr2 + r2 dθ2) + V 2 dΩ2

D−3 + V 3 dψ2, (1)

where

V 1 = 1

U
, V 2 = r2

(
cos2 θ − 1

2

(
1 + R2

r2
− U

))
,

V 3 = r2
(

sin2 θ − 1

2

(
1 − R2

r2
− U

))
, (2)

with U =
√

1 + R4

r4 − 2R2

r2 cos 2θ . The coordinate range in (1) is

0 � r < ∞, 0 � θ � π/2, 0 � ψ � 2π , dΩ2
D−3 is the metric on

the unit sphere S D−3, and R > 0 is an arbitrary parameter. The co-

ordinate transformation ρ = r
√

U , tan Θ = (
r2+ρ2+R2

r2+ρ2−R2 ) tan θ , leads

to a more usual parametrization of the D > 3 flat space, ds2 =
dρ2 + ρ2(dΘ2 + cos2 Θ dΩ2

D−3 + sin2 Θ dψ2).
It is now manifest that for 0 < r < R , a surface of constant r has

ring-like topology S D−2 × S1, where the S1 is parametrized by ψ .
The BRs will have their event horizon at a constant value of r < R ,
and so they will inherit this topology.1

3. The ansatz and general relations

The metric for the d � 5 BR geometry preserves most of the
basic structure of (1), containing, however, additional terms that
encode the gravity effects,

ds2 = f1(r, θ)
(
dr2 + r2 dθ2) + f2(r, θ)dΩ2

d−4

+ f3(r, θ)
(
dψ − w(r, θ)dt

)2 − f0(r, θ)dt2. (3)

Here the range of the radial coordinate is rH � r < ∞, and r = rH

corresponds to the event horizon. Thus the domain of integration
has a rectangular shape, and is well suited for numerical calcula-
tions.

The equations for ( f i, w) are found by using a suitable com-
bination of the Einstein equations, Et

t = 0, Er
r + Eθ

θ = 0, Eψ
ψ = 0,

EΩ
Ω = 0 and Et

ψ = 0 (with Eν
μ the Einstein tensor), the remaining

Einstein equations Er
θ = 0, Er

r − Eθ
θ = 0 yielding two constraints.

The boundary conditions satisfied at r = rH by the metric func-
tions are f0(rH ) = 0, 2 f1 + rH∂r f1 = ∂r f2 = ∂r f3 = 0, w = ΩH . As
r → ∞, the Minkowski spacetime background is recovered, with
f0 = f1 = 1, f2 = r2 cos2 θ , f3 = r2 sin2 θ , w = 0. At θ = π/2, we
impose ∂θ f0 = ∂θ f1 = f2 = ∂θ f3 = ∂θ w = 0. The boundary condi-
tions at θ = 0 are ∂θ f0 = ∂θ f1 = ∂θ f2 = f3 = ∂θ w = 0, except for
the interval rH < r � R , where we impose instead f2 = ∂θ f3 = 0
on the functions f2, f3.

The metric of a spatial cross-section of the horizon is

dσ 2 = f1(rH , θ)r2
H dθ2 + f2(rH , θ)dΩ2

d−4 + f3(rH , θ)dψ2. (4)

From the above boundary conditions it is clear that the topology
of the horizon is Sd−3 × S1 (the Sd−3 is not a round sphere), since
f3 is nonzero for any r � R , while f2 vanishes at both θ = 0 and
θ = π/2 (which will correspond to the poles of the Sd−3-sphere).

1 Moreover, for d = 5, the (r, θ)-coordinates correspond to equipotential surfaces
of a scalar field sourced by a ring.

The radii on the horizon of the ring circle, R1, and of the
(d − 3)-sphere, Rd−3, are unambiguously defined only for very thin
rings. To obtain a measure for the deformation of the Sd−3 sphere,
we compare the circumference at the equator, Le (θ = π/4, where
the sphere is fattest), with the circumference of Sd−3 along the
poles, L p ,

Le = 2π
√

f2(rH ,π/4), Lp = 2

π/2∫
0

dθ rH

√
f1(rH , θ), (5)

and consider, in particular, their ratio Le/L p . An estimate of the

deformation of S1 is given by the ratio R(in)
1 /R(out)

1 , where R(in)
1

and R(out)
1 are its radii inside and outside of the ring, respectively,

R(in)
1 = √

f3(rH ,0), R(out)
1 = √

f3(rH ,π/2). (6)

A study of the d = 5 Emparan–Reall BR written within the
ansatz (3) can be found in Ref. [9], including the explicit form of
the metric functions. Note, that the d � 5 MP BH with one rota-
tion parameter can also be written in the form (3). For BHs with
a spherical horizon topology, the metric functions satisfy the same
set of boundary conditions, except for f2 and f3 at θ = 0, where
∂θ f2 = f3 = 0 for any r > rH (see Ref. [9] for a discussion of the
d = 5 case).

For both BRs and MP BHs, the event horizon area AH , Hawking
temperature T H and event horizon velocity ΩH of the solutions
are given by

AH = 2πrH Vd−4

π/2∫
0

dθ

√
f1 f d−4

2 f3

∣∣∣∣
r=rH

,

T H = 1

2π
lim

r→rH

1

(r − rH )

√
f0

f1
, ΩH = w|r=rH , (7)

where Vd−4 is the area of the unit Sd−4 sphere.
The mass and angular momentum are read from the large-r

asymptotics of the metric functions, gtt = − f0 = −1 + Ct
rd−3 + · · · ,

gψt = − f3 w = sin2 θ
Cψ

rd−3 + · · · , with (G = 1)

M = (d − 2)Vd−2

16π
Ct, J = Vd−2

8π
Cψ . (8)

Also, both the MP and the BR solutions satisfy the Smarr law

d − 3

d − 2
M = T H

AH

4
+ ΩH J . (9)

Following [5], we define a scale by fixing the mass and introduce
the dimensionless ‘reduced’ quantities

j = c
1

d−3
j

J

M
d−2
d−3

, aH = c
1

d−3
a

AH

M
d−2
d−3

,

w H = cwΩH M
1

d−3 , tH = ct T H M
1

d−3 , (10)

where c j = Vd−3
2d+1

(d−2)d−2

(d−3)(d−3)/2 , ca = Vd−3
2(16π)d−3 (d − 2)d−2( d−4

d−3 )
d−3

2 , cw =
√

d − 3(
(d−2)

16 Vd−3)
− 1

d−3 , ct = 4π
√

d−3
d−4 ( d−2

2 Vd−3)
− 1

d−3 . Then both

the BRs and the MP BHs are conveniently parametrized by a single
dimensionless parameter which we choose to be j.

4. The numerical scheme

We employ a numerical algorithm developed in [9,10] which
uses a Newton–Raphson method to solve for ( f i, w), whilst
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