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We show from first principles the emergence of classical Boltzmann equations from relativistic
nonequilibrium quantum field theory as described by the Kadanoff–Baym equations. Our method applies
to a generic quantum field, coupled to a collection of background fields and sources, in a homogeneous
and isotropic spacetime. The analysis is based on analytical solutions to the full Kadanoff–Baym
equations, using the WKB approximation. This is in contrast to previous derivations of kinetic equations
that rely on similar physical assumptions, but obtain approximate equations of motion from a gradient
expansion in momentum space. We show that the system follows a generalized Boltzmann equation
whenever the WKB approximation holds. The generalized Boltzmann equation, which includes off-shell
transport, is valid far from equilibrium and in a time dependent background, such as the expanding
universe.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nonequilibrium phenomena play a crucial role in many areas
of physics, including the early history of the universe, heavy ion
collisions, condensed matter physics and quantum information. In
the era of precision cosmology and with the arrival of the LHC and
RHIC experiments, in particular the first two applications, which
require a relativistic description, have gained considerable inter-
est. Transport in nonequilibrium situations can often in very good
approximation be described by Boltzmann equations (BEs). These
assume that the system can be characterized by a number of distri-
bution functions for classical particles, which propagate freely be-
tween isolated interactions and carry no memory of their history.
However, the definition of asymptotic states, on which the sin-
gle particle description is based, is ambiguous in a dense plasma.
What is more, the standard BEs by construction cannot describe
memory and off-shell effects or quantum coherence. Usually these
effects are treated by effective kinetic equations of the Boltzmann
type [1–33], i.e. by a set of first order differential equations for
generalized distribution functions that are local in time. As the
above issues are conceptual, their range of validity and possible
corrections cannot be determined within a framework of BEs and
require a derivation from first principles.
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The full equations of motion of nonequilibrium quantum field
theory, on which first-principle derivations of the BEs are usu-
ally based, are known as Kadanoff–Baym equations (KBEs) [3].1

These equations, being coupled second order integro-differential
equations, are considerably more complicated than BEs. Most ap-
proaches to establish a connection between out-of-equilibrium
quantum fields and kinetic equations make a number of approx-
imations on the KBEs before they are solved (e.g. Refs. [3,5,6,9,
11–15,17–19,23–25,27]). Starting point is usually a gradient ex-
pansion, performed in Wigner-space, which provides a consistent
approximation scheme when a separation of scales is realized in
the system. Common additional simplifications include close-to-
equilibrium assumption for all fields, the quasiparticle approxi-
mation and the Kadanoff–Baym ansatz for correlation functions.
However, the Wigner space method as such does not rely on these
additional assumptions if the gradient expansion is performed con-
sistently, which may require resummations [28].

In this Letter, we show how the full KBEs can be solved by us-
ing the Wentzel–Kramers–Brillouin (WKB) [34] method (for earlier
uses of the WKB method in a similar context see e.g. Refs. [13,
15]). This approach avoids the Fourier transformation to Wigner
space in relative time and uses what is sometimes called the two
time formalism. It is valid far from equilibrium and does not rely on

1 The KBEs are equations of motion for correlation functions. Alternatively one
can use equations of motion for the fields themselves as starting point, cf. [33] and
references therein for a detailed comparison.
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an on-shell approximation or any other a priori assumption about
the form of the correlation functions, such as the Kadanoff–Baym
ansatz. We illustrate our method for a real scalar field, coupled to
other fields, in a spatially homogeneous and isotropic background.
This choice is for transparency only; the derivation does not rely
on assumptions about the spin and interactions of the field or
background. Though technically more difficult, the generalization
to fermions with gauge interactions is straightforward.

2. Nonequilibrium quantum field theory

We consider the dynamics of a real scalar field φ that is de-
scribed by relativistic quantum field theory. The field φ weakly
couples to a background, possibly containing many degrees of free-
dom whose dynamics is in principle known and that we refer to
as χi . The Lagrangian reads

L = 1

2
∂μφ∂μφ − 1

2
m(t)2φ2 − φO[χi, t] +Lχi , (1)

where O[χi, t] denotes the sum of generic combinations of fields
χi with coefficients that may depend on time explicitly.2 Lχi de-
termines the dynamics of χi (we use h̄ = c = 1). We allow a
time-dependent mass m(t) to account for Hubble expansion when
interpreting t as conformal time, the time-dependence of other op-
erators is contained in O[χi, t] and Lχi .

In quantum physics, any thermodynamic system can be charac-
terized by a density matrix �. Knowledge of the density matrix
allows to compute expectation values for all observables at all
times. The same information is contained in the set of all n-point
functions 〈φ(x1) · · ·φ(xn)〉 etc. of the fields (with 〈· · ·〉 ≡ tr[� · · ·]).
However, most quantities of practical interest for which one for-
mulates a Boltzmann equation can be expressed in terms of one-
and two-point functions; this includes the energy–momentum ten-
sor and charge densities. It is, therefore, usually sufficient to track
the time evolution of these.

An out-of-equilibrium quantum field has two independent con-
nected two-point functions. In case of φ they are conveniently
chosen as

Δ−(x1, x2) ≡ i
〈[
φ(x1),φ(x2)

]〉
,

Δ+(x1, x2) ≡ 1

2

〈{
φ(x1),φ(x2)

}〉
, (2)

with the obvious symmetry relations Δ±(x2, x1) = ±Δ±(x1, x2).
Here [ , ] and { , } are commutator and anti-commutator, respec-
tively. Δ−(x1, x2) is known as spectral function and basically en-
codes information about the spectrum of resonances in the ther-
modynamic description, which may differ from the spectrum in
vacuum. The statistical propagator Δ+(x1, x2) carries information
about the occupation numbers of different modes. We will in the
following derive the quantum field theory analogue to the clas-
sical particle distribution function from the statistical propagator.
We have in mind applications in cosmology and restrict the anal-
ysis to spatially homogeneous and isotropic systems. Then, the
correlation functions only depend on relative spatial coordinates
x1 − x2 etc., and it is convenient to perform a spatial Fourier
transform in these coordinates, yielding functions like Δ±

q (t1, t2) ≡∫
d3(x1 − x2) e−iq(x1−x2)Δ±(x1, x2).

2 Our approach does not rely on the way φ couples to the bath as long as con-
ditions (1)–(3) specified in Section 3 are fulfilled. In (1) we chose a coupling that
is linear in φ to obtain the simple explicit expressions (5) for the self-energies and
to justify the time translation invariance of Π± in Eqs. (24)–(26). All other formu-
lae and considerations remain valid for an arbitrary coupling between φ and other
fields.

In a general out-of-equilibrium system the two-point functions
Δ±

q (t1, t2) have to be found as solutions to the KBEs

(
∂2

t1
+ ωq(t1)

2)Δ−
q (t1, t2) = −

t1∫
t2

dt′ Π−
q

(
t1, t′)Δ−

q

(
t′, t2

)
, (3)

(
∂2

t1
+ ωq(t1)

2)Δ+
q (t1, t2)

= −
t1∫

ti

dt′ Π−
q

(
t1, t′)Δ+

q

(
t′, t2

) +
t2∫

ti

dt′ Π+
q

(
t1, t′)Δ−

q

(
t′, t2

)
,

(4)

where ωq(t)2 ≡ m(t)2 + q2 (note that in equilibrium Δ±
q would

only depend on t1 − t2), and ti denotes the initial time of the
system. The KBEs can be derived within the Schwinger–Keldysh
formalism, see e.g. [6,35–38]. The first term on the RHS of (4) is
associated with non-Markovian (memory) effects while the second
is often referred to as noise term. The boundary conditions for
Δ−

q are fixed by microcausality and canonical quantization for a
real scalar field, Δ−

q |t1=t2 = 0, ∂t1Δ
−
q |t1=t2 = −∂t2Δ

−
q |t1=t2 = 1 and

∂t1∂t2Δ
−
q |t1=t2 = 0. The boundary conditions for Δ+

q |t1=t2=ti are de-
termined by the physical initial conditions of the system at time ti .
For simplicity we assumed Gaussian initial correlations for φ, more
general initial conditions are e.g. discussed in [22]. Below, we will
drop momentum indices q when possible.

The quantities Π± appearing in (3) and (4) are the self-energies
of φ; in analogy to (2) they are at leading order in O[χi] given by

Π−(x1, x2) = 〈[
O

[
χi(x1), tt

]
,O

[
χi(x2), t2

]]〉
,

Π+(x1, x2) = − i

2

〈{
O

[
χi(x1), t1

]
,O

[
χi(x2), t2

]}〉
, (5)

and contain information about the interaction between φ and the
background fields χi . They can be calculated in terms of the two-
point functions of χi within the 2PI formalism (see e.g. Refs. [35,
36] for details).

3. Towards Boltzmann equations

We will discuss the emergence of a description of φ in terms of
effective kinetic equations by using analytical solutions of the full
KBEs that are found with the WKB method. To this end, we make
the following assumptions (we also send ti → −∞, effects of finite
ti are discussed below):

(1) The self-energies Π±(t1, t2) are damped with respect to the
relative time |t1 − t2|, approaching zero for |t1 − t2| � τint, where
we introduced the interaction time τint. Here, τint can be consid-
ered as definition for the duration of e.g. scattering events. Then
evaluating one-sided Fourier transforms of the self-energies with
respect to relative time,

Π̃±(t,ω) ≡
∞∫

0

dz eiωzΠ±(t, t − z), (6)

practically does not require knowledge of the system in the distant
past z 	 τint. In equilibrium the minus-component would corre-
spond to the common retarded self-energy, Π̃−(t,ω) = Π R(ω).

(2) We assume that for fixed time t the pole structure of
(ω2 − ω2

q(t) − Π̃−(t,ω))−1 is dominated by the root ω = Ω̂t ≡
Ωt − i

2 Γt , with

Ωt ≡
√

ω2
q(t) + Re Π̃−(t, Ω̂t), Γt ≡ − Im Π̃−(t, Ω̂t)

Ωt
. (7)
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