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Hadron spectrum in a two-colour baryon-rich medium
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Abstract

The hadron spectrum of SU(2) lattice gauge theory with two flavours of Wilson quark is studied on an 83 ×16 lattice using all-to-all propagators,
with particular emphasis on the dependence on quark chemical potential μ. As μ is increased from zero the diquark states with non-zero baryon
number B respond as expected, while states with B = 0 remain unaffected, until the onset of non-zero baryon density at μ = mπ/2. Post onset
the pi-meson mass increases in accordance with chiral perturbation theory while the rho becomes lighter. In the diquark sector a Goldstone state
associated with a superfluid ground state can be identified. A further consequence of superfluidity is an approximate degeneracy between mesons
and baryons with the same spacetime and isospin quantum numbers. Finally we find tentative evidence for the binding of states with kaon quantum
numbers within the baryonic medium.
© 2008 Elsevier B.V. All rights reserved.

PACS: 11.15.Ha; 12.40.Yx; 21.65.+f; 24.85.+p

Keywords: Chemical potential; Hadron spectrum; Nuclear matter

1. Introduction

At large baryon chemical potential μB the properties of
QCD are expected to change as the system moves from a con-
fined nuclear matter phase to a deconfined quark matter phase
where the relevant degrees of freedom are quarks and gluons.
At low temperature T and high μB , the attraction between
quarks is believed to be sufficient to promote diquark Cooper
pairing leading to a colour superconducting ground state. Weak-
coupling techniques can be used at asymptotic densities and
have revealed a superconducting phase known as the colour-
flavour locked phase. However as density is reduced towards
phenomenologically reasonable values, the precise nature of the
ground state appears very sensitive both to additional parame-
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ters such as isospin chemical potential and strange quark mass,
and also to the nature of the non-perturbative assumptions made
in the calculation. It seems natural to use Lattice QCD to in-
vestigate these issues, but unfortunately whilst the lattice has
been used very successfully to investigate QCD with T > 0, the
well-known “Sign Problem” has made progress for μB/T � 1
impossible.

Orthodox simulation techniques can be applied, however, to
the case of two colour QCD (QC2D) with gauge group SU(2).
Whilst this theory differs in important ways from QCD, for
instance in having bosonic baryons in the spectrum, and in
having a superfluid, rather than superconducting, ground state
at large μB , it remains the simplest gauge theory in which a
systematic non-perturbative treatment of a baryonic medium is
possible. Moreover, recent simulations [1] have provided evi-
dence that there exist two distinct forms of two colour matter:
the dilute Bose gas formed from diquark bound states which
forms at onset, i.e. for μB > μBo = Mπ , in which superfluid-
ity arises via Bose–Einstein condensation of scalar diquarks, is
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supplanted at larger densities by a deconfined “quark matter”
phase in which a system of degenerate quarks is disrupted by
BCS condensation at the Fermi surface. Studies in this regime
may have qualitative or even quantitative relevance for QCD
quark matter, particularly in the non-Goldstone sector. For in-
stance, Schäfer [2] has stressed how the impact of instantons on
the excitation spectrum at high baryon density could be eluci-
dated by lattice simulations.

In this Letter we study the μB -dependence of the hadron
spectrum in both meson and baryon sectors of QC2D with
Nf = 2 flavours of Wilson quark, which we find to vary dramat-
ically as the onset from vacuum to a ground state with non-zero
baryon density is traversed. We build on the pioneering work
of the Hiroshima group [3], who found that beyond onset the
pion mass did not change noticeably, but the rho meson be-
came significantly lighter, so that the level-ordering is reversed.
Two baryon channels were also studied but no significant μB -
dependence found. This work was performed on small lattices,
and only looked at a few states. One of our aims is to improve
and update their results. We also study the nature of the Gold-
stone mode associated with superfluidity, as done for QC2D
with staggered lattice fermions in [4], and expose the specif-
ically two colour phenomenon of “meson–baryon” mixing in
the superfluid state, whereby since B is no longer conserved,
states interpolated by mesonic operators qq̄ and diquark oper-
ators qq have identical quantum numbers and hence exhibit an
approximate degeneracy. Finally, we make the first measure-
ments of strange meson masses in a baryonic medium, and find
tentative evidence for bound states of kaons in nuclei.

2. Formulation

The gauge-invariant lattice action with Nf = 2 degenerate
fermion flavours is [1]

S = ψ̄1M(μ)ψ1 + ψ̄2M(μ)ψ2

(1)− κj
(
ψ̄1Kψ̄T

2 − ψT
2 Kψ1

)
,

with M the conventional Wilson fermion matrix (with lattice
spacing a = 1)

Mxy(μ) = δxy − κ
∑
ν

[
(1 − γν)e

μδν0Uν(x)δy,x+ν̂

(2)+ (1 + γν)e
−μδν0U†

ν (y)δy,x−ν̂

]
,

κ the hopping parameter, μ the quark chemical potential, and
j the strength of an SU(2)L ⊗ SU(2)R-invariant diquark source
term needed to regularise IR fluctuations in the superfluid
phase, which should be extrapolated to zero to reach the physi-
cal limit. The factor κ in the diquark source term matches a sim-
ilar factor in the expression for the quark number density [1], so
that j is conjugate to the density of diquark pairs. The subscript
on the fermion fields is a flavour index. The anti-unitary opera-
tor K = KT ≡ Cγ5τ2, where CγμC−1 = −γ T

μ = −γ ∗
μ and the

Pauli matrix τ2 acts on colour indices. A useful relation is

(3)MT (μ) = −Kγ5M(−μ)Kγ5.

The hadronic states examined in this Letter are qq̄ mesons
and qq , q̄q̄ diquark baryons and anti-baryons. In all cases
we use local interpolating operators of the form ψ̄(x)Γ ψ(x),
ψT (x)KΓ ψ(x), ψ̄(x)KΓ̄ ψ̄T (x). The matrix Γ = γ0Γ̄

†γ0 de-
termines the spacetime quantum numbers of the hadron, with
inclusion of the K factor ensuring that mesons and baryons with
the same Γ have the same JP . In this Letter we will focus on
states with Γ ∈ {1, γ5, γj , iγ5γj } with j = 1, . . . ,3 correspond-
ing to JP ∈ {0+,0−,1−,1+}.
2.1. Fermion propagators

The fermion action (1) can be written in the form
Ψ̄M(μ, j)Ψ where Ψ̄ ≡ (ψ̄1,ψ

T
2 , ψ̄2,ψ

T
1 ) and Ψ ≡ (ψ1, ψ̄

T
2 ,

ψ2, ψ̄
T
1 )T . It has the form:

(4)M=
(

A 0
0 Ā

)
with A = 1

2

(
M −κjK

κjK −MT

)
,

and Ā(j) = A(−j). Now consider the propagator

(5)
〈
Ψ (x)Ψ̄ (y)

〉 ≡
⎛
⎜⎝

S11 S12 0 0
S̄21 S̄22 0 0
0 0 S22 S21
0 0 S̄12 S̄11

⎞
⎟⎠

where the zero entries arise from the assumption of isospin
symmetry. This symmetry also implies that

S22 = S11 ≡ SN ; S̄11 = S̄22 ≡ S̄N ;
(6)S21 = −S12 ≡ SA; S̄12 = −S̄21 ≡ −S̄A,

where the subscripts denote “normal” and “anomalous” propa-
gation. Anomalous propagation arises from particle–hole mix-
ing in a superfluid ground state; on a finite volume SA vanishes
in the limit j → 0.

2.2. Mesons

The isovector (I = 1) meson operators M1 are given by
ψ̄1Γ ψ2, ψ̄2Γ ψ1 and (ψ̄1Γ ψ1 − ψ̄2Γ ψ2)/

√
2. The charged

meson correlator is then〈
M1(x)M1†(y)

〉
= 〈

ψ̄1(x)Γ ψ2(x)ψ̄2(y)Γ̄ ψ1(y)
〉

= −Tr
[
SN(y, x)Γ SN(x, y)Γ̄

]
(7)+ Tr

[
S̄A(y, x)Γ SA(x, y)Γ̄ T

]
.

For the neutral meson correlator, the “disconnected” parts made
up from the product of two traces cancel because of isospin
symmetry. The connected parts are:〈
M1(x)M1†(y)

〉
= 〈

ψ̄1(x)Γ ψ1(x)ψ̄1(y)Γ̄ ψ1(y)
〉
c

− 〈
ψ̄1(x)Γ ψ1(x)ψ̄2(y)Γ̄ ψ2(y)

〉
c

− 〈
ψ̄2(x)Γ ψ2(x)ψ̄1(y)Γ̄ ψ1(y)

〉
c

+ 〈
ψ̄2(x)Γ ψ2(x)ψ̄2(y)Γ̄ ψ2(y)

〉
c

= −Tr
[
SN(y, x)Γ SN(x, y)Γ̄

]
(8)+ Tr

[
S̄A(y, x)Γ SA(x, y)Γ̄ T

]
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