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The neutrino mixing matrix could (almost) be diagonal with entries ±1
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It is consistent with the measurement of θ13 ∼ 0.15 by Daya Bay to suppose that, in addition to being
unitary, the neutrino mixing matrix is also almost Hermitian, and thereby only a small perturbation from
diag(+1,−1,−1) in a suitable basis. We suggest this possibility simply as an easily falsifiable ansatz,
as well as to offer a potentially useful means of organizing the experimental data. We explore the
phenomenological implications of this ansatz and parametrize one type of deviation from the leading
order relation |V e3| ≈ |Vτ1|. We also emphasize the group-invariant angle between orthogonal matrices
as a means of comparing to data. The discussion is purely phenomenological, without any attempt to
derive the condition V † ≈ V from a fundamental theory.

Published by Elsevier B.V.

1. A phenomenological ansatz

The neutrino mixing matrix V is defined by να = Vαiνi , where
α = e,μ, τ denotes the charged lepton mass basis (“flavor basis”),
and i = 1,2,3 denotes the neutrino mass basis. The relevant part
of the Lagrangian written in the flavor basis reads

L = −
∑

α=e,μ,τ

mαeαeα − 1

2
να(Mν)αβνβ + h.c. (1.1)

In this basis, the neutrino mass matrix is Mν = V ∗Dν V †, where
Dν ≡ diag(m1,m2,m3) with the mi real and positive.

Assuming that the three light neutrinos of the Standard Model
are Majorana, the magnitudes of the entries of V are constrained
by data to be

|V exp| ≈
⎛
⎝ 0.78–0.84 0.52–0.61 0.13–0.17

0.40–0.58 0.39–0.65 0.57–0.80

0.19–0.43 0.53–0.74 0.59–0.81

⎞
⎠ . (1.2)

To obtain Eq. (1.2) we have used 0.550 � θ12 � 0.658 and 0.620 �
θ23 � 0.934 from the work of Gonzalez-Garcia, Maltoni, and Sal-
vado [1], and 0.135 � θ13 � 0.171 from the recent results of Daya
Bay [2]. The ranges in Eq. (1.2) are correlated in such a way as to
preserve the unitarity condition V † V = I .

In an effort to obtain a theoretical understanding of the mixing
matrix, one might suppose that the numerical values in Eq. (1.2)
arise as a small perturbation from a “simple” ansatz. As a straw
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man argument for what such an ansatz might be, consider an older
global best fit given by [3]

|V exp,old| ≈
⎛
⎝ 0.77–0.86 0.50–0.63 0.00–0.22

0.22–0.56 0.44–0.73 0.57–0.80

0.21–0.55 0.40–0.71 0.59–0.82

⎞
⎠ . (1.3)

Simply by looking at the ranges in Eq. (1.3), we observe that it
was once numerically consistent to suppose that V is Hermitian.
Without any theoretical motivation, we now suppose that the true
mixing matrix satisfies the leading order relation V † ≈ V , and then
we study small deviations required to fit the new data. We propose
this rather ad hoc constraint in the spirit of trying to make sense
of the data by reducing the number of free parameters in the neu-
trino sector [4]. This exercise is intended partially to illustrate that
there are still many possibilities for what the true mixing matrix
might be.

2. Real symmetric mixing matrix

As a warmup, we first consider the case for which V is real.
Then V is orthogonal, meaning V T V = I , and our Hermiticity
ansatz amounts to imposing the condition V T = V . The old ex-
perimental bounds adjusted for compatibility with this ansatz are

∣∣V ansatz
exp,old

∣∣ ≈
⎛
⎝0.77–0.86 0.50–0.56 0.21–0.22

0.50–0.56 0.44–0.73 0.57–0.71

0.21–0.22 0.57–0.71 0.59–0.82

⎞
⎠ . (2.1)

Again, the ranges are correlated, as required by V T V = I [see
Eq. (2.4)]. Immediately we see that the Daya Bay observation of
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|V e3| < 0.21 rules out this ansatz as an exact prediction,1 but oth-
erwise it is still consistent with Eq. (1.2).

If V is real symmetric, then it can be diagonalized by an or-
thogonal transformation: V = XdX T , where d is diagonal and X is
orthogonal. Then V T V = I implies V 2 = Xd2 X T = I , so that d2 = I .
Thus our ansatz amounts to proposing that, in a particular basis,
the neutrino mixing matrix is diagonal with entries equal to ±1.

We now have a choice as to how to arrange the minus signs
ind. Two of the nonzero entries in d must have the same sign,
while the third must have a sign opposite to that of the first two.2

In other words, we get to choose which 2-dimensional subspace of
d is proportional to the identity matrix. This choice is arbitrary3;
to fix the discussion, we choose

d =
⎛
⎝1 0 0

0 −1 0

0 0 −1

⎞
⎠ (2.2)

so that d equals minus the identity matrix in the (2,3)-plane.
Any rotation matrix in 3 dimensions can be written as a prod-

uct of independent rotations about each of 3 mutually orthogonal
axes. That is, given the rotation matrices

X1 =
⎛
⎝1 0 0

0 C1 −S1

0 S1 C1

⎞
⎠ , X2 =

⎛
⎝ C2 0 S2

0 1 0

−S2 0 C2

⎞
⎠ ,

X3 =
⎛
⎝ C3 S3 0

−S3 C3 0

0 0 1

⎞
⎠ (2.3)

where C I ≡ cosϕI and S I ≡ sinϕI , we can write X as a product of
the three XI in any order.4 Since d is proportional to the identity
matrix in the (2,3)-plane, it is unchanged by a rotation about the
first axis: X1dX T

1 = d. Thus one of the parameters in V = XdX T

drops out, leaving us with a two-parameter ansatz for the mixing
matrix. Choosing the ordering X = X3 X2 X1 implies

V =
⎛
⎝

C2
2 cos(2ϕ3) − S2

2 −C2
2 sin(2ϕ3) −C3 sin(2ϕ2)

× −C2
2 cos(2ϕ3) − S2

2 S3 sin(2ϕ2)

× × − cos(2ϕ2)

⎞
⎠

(2.4)

where we have displayed only the upper triangle of V since by
construction it is symmetric. The values for the angles consistent
with Eq. (1.3) turn out to be 0.32 � ϕ2 � 0.42 and 1.20 � ϕ3 �
1.27, where the angles are expressed in radians, as shown in Fig. 1.

As an arbitrarily chosen “typical” example of Hermitian mixing,
the values (ϕ2,ϕ3) = (0.35,1.23) imply a mixing matrix

V 0.35,1.23 ≈
⎛
⎝−0.80 0.56 0.22

0.56 0.57 0.61

0.22 0.61 −0.76

⎞
⎠ (2.5)

1 Much of this work was completed before the measurement of nonzero reactor
angle, θ13 ∼ 0.15. The fact that the reactor angle is relatively large, meaning closer
to ∼ 0.2 than to zero, is what keeps our analysis relevant.

2 The solution d = I trivially satisfies d2 = I . This would result in V = XdX T =
X X T = I , which is of course experimentally unacceptable.

3 For example, let X = X ′ P , where X ′ is orthogonal and P is a permutation ma-
trix. Then V ≡ XdX T = X ′d′(X ′)T is of the same form as before, but with a new
diagonal matrix d′ = PdP T with the two minus signs permuted. Of course, we are
also free to multiply V and hence d by an overall sign.

4 At this point we should emphasize that ϕI are not the three PMNS angles that
parametrize the mixing matrix V = XdX T . That is why we have chosen to denote
their sines and cosines by capital letters, in contrast to the notation in Section 3 for
the usual PMNS angles.

Fig. 1. The values of ϕ2 and ϕ3 in the quadrant (ϕ2,ϕ3) ∈ ([0, π
2 ], [0, π

2 ]) consistent
with an older set of oscillation data, Eq. (1.3). This may be a useful starting point
about which to perturb in order to fit the new data, Eq. (1.2).

where we have rearranged the minus signs into a standard form.5

Compare this with the often-studied “tribimaximal mixing” ansatz
[5,6]

V TB ≡

⎛
⎜⎜⎝

−2√
6

1√
3

0

1√
6

1√
3

1√
2

1√
6

1√
3

−1√
2

⎞
⎟⎟⎠ ≈

⎛
⎝−0.82 0.58 0

0.41 0.58 0.71

0.41 0.58 −0.71

⎞
⎠ . (2.6)

These two matrices appear qualitatively “very different,” given that
one has V e3 ≈ 0.22 while the other has V e3 = 0. To make this no-
tion more precise, define6 the SO(3)-invariant angle Θ between
two special orthogonal matrices V and V ′:

Θ
(

V , V ′) ≡ cos−1
(

1

3
tr

(
V T V ′)). (2.7)

The matrices V 0.35,1.23 and V TB are separated by an angle

Θ(V 0.35,1.25, V TB) ≈ 0.20 ∼ 11◦ (2.8)

in SO(3). As a related example, one might compare to another
ansatz with the same atmospheric and reactor angles as tribi-
maximal mixing (θ23 = π

4 and θ13 = 0, respectively), but with the
solar angle related to7 the golden ratio: θ12 = tan−1(1/ϕ), with
ϕ = 1

2 (1 + √
5) [7–11]. The PMNS matrix for this ansatz is

V golden ≈
⎛
⎝−0.85 0.53 0

0.37 0.60 0.71

0.37 0.60 −0.71

⎞
⎠ . (2.9)

This is separated from the matrix of Eq. (2.5) by an angle
Θ(V 0.35,1.25, V golden) ≈ 0.20 ∼ 11◦ , approximately the same as
for V TB. More generally, we see that the entire family of “μτ -
symmetric” mixing matrices is approximately separated from the
entire family of Hermitian mixing matrices by ∼ 11◦ in SO(3).

5 So as not to interrupt the logical flow we will postpone discussion of rephasing
V until Section 3.

6 Another measure [12] of the SO(3)-invariant distance between matrices is

D(V , V ′) = 1
3 tr(I − V T V ′). Here we choose the angular distance because it pro-

vides an intuitive notion of “large” versus “small” in terms of an angle Θ ranging
from 0 to π/2.

7 The references discuss various different proposals for relating the solar angle to
the golden ratio. We arbitrarily choose the particular implementation of Eq. (2.9) to
be concrete.
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