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We propose a mechanism for the generation of temperature fluctuations of cosmic microwave back-
ground. We consider a large number of fields, such as Kaluza–Klein modes and string excitations. Each
field contributes to the gravitational potential by a small amount, but an observable level of temperature
fluctuations is achieved by summing up the contribution of typically of order 1014 fields. Tensor fluctua-
tions are hardly affected by these fields. Our mechanism is based on purely quantum effects of the fields
which are classically at rest, and is different from the one in slow-roll inflation. Using the observed data,
we find constraints on the parameters of this model, such as the size of the extra dimensions and the
string scale. Our model predicts a particular pattern of non-gaussianity with a small magnitude.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Observation of cosmic microwave background (CMB) [1] pro-
vides a great opportunity for testing fundamental theories. It is
generally believed that the fluctuations of CMB originate from
quantum fluctuations generated at energy much higher than
present accelerators can achieve.

It is hoped that string theory gives predictions for observational
cosmology. But at the current stage of its development, string the-
ory is defined only in limited classes of background spacetimes.
The analysis of cosmology has been limited to those based on low
energy effective field theory, and it has been difficult to make con-
crete predictions. (For attempts to formulate cosmology beyond the
level of effective field theory, see e.g. [2] and [3].)

In this Letter we will focus on an aspect of fundamental theo-
ries, namely the presence of a large number of fields. These could
be Kaluza–Klein (KK) modes from the compactification of extra di-
mensions or excited states of strings. Our analysis is mostly based
on effective field theory, but we will also use a general property of
perturbative string theory as an input.

It would be possible that the size of extra dimensions L is large
in unit of Hubble scale of inflation H−1. We already know a hi-
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erarchy of scales between the Planck scale mpl and H : The fact
that tensor perturbation (B-mode polarization of CMB) has not
been observed implies H is at least 4 orders of magnitude smaller
than mpl [1]. The question is whether string scale ms is close to
mpl or H . We will see below that with ms slightly smaller than
H ∼ 10−4mpl , L can be as large as L ∼ 108 H−1. In such a case,
there will be many KK modes with m � H . We will show that the
quantum effects of these fields lead to interesting observable ef-
fects.

For concreteness, we shall consider a collection of N free
fields φA (A = 1, . . . , N) with mass mA , which are classically at
the bottom of the potential φA = 0. We will not consider inflaton
field, and take the background to be pure de Sitter, and find the
temperature fluctuations generated during inflation. At the end of
this Letter, we make comments on the effect of time dependence
of Hubble, e.g. near the end of inflation.

In this Letter we point out that temperature fluctuations δT /T
can be generated by a mechanism different from the standard one
based on slow-roll inflation. In the latter case, the classical value
of a scalar field (inflaton) provides a preferred time slicing, and
its fluctuation is interpreted as the difference of duration of infla-
tion at different points in space, which results in the density (or
temperature) anisotropy. In our case, the fields φA are classically
at rest, and the above argument does not apply. It has been as-
sumed that these fields do not contribute to δT /T . We will show
that by keeping quadratic terms in φA , the gravitational poten-
tial Φ is generated through quantum effects of these fields. Each
field gives small contribution, but when N � 1, this effect becomes
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important. The large ratio between scalar and tensor contributions
to δT /T is usually assumed to be the consequence of the small-
ness of the slope of the inflaton potential. In our approach, it is
the consequence of a large number of fields.

In the following, we first review quantization in de Sitter space,
and recall that fields with m < 3

2 H do not oscillate at super-
horizon scales, because the “friction” due to the cosmic expansion
overdumps the oscillation. These are the fields that we will focus
on. We then study Einstein equations and solve for the gravita-
tional potential Φ in terms of the matter fields. Using this, we
find the contribution to CMB fluctuations from KK modes. We
will make an argument based on string perturbation theory that
if string scale ms is lower than H , the summation over the mass
is effectively cut off at ms . We then use the observed data on the
amplitude of δT /T and the tensor-to-scalar ratio rt/s to constrain
the parameters, such as ms and L.

There have been inflationary models involving a large num-
ber of fields. In “N-flation” [4] (or “assisted inflation” [5]), many
fields (such as axions) classically roll down the potential, collec-
tively producing an effect similar to chaotic inflation. Our mech-
anism is different from this, since we are not assuming classical
motion. Also note that our mechanism is different from the curva-
tons scenario [6]. We demonstrate that curvature fluctuations are
generated during inflations without such a late time mechanism.

2. Quantization in de Sitter background

We consider background de Sitter space

ds2 = dt2 − a2(t)d�x2, a(t) = H−1eHt, (1)

and a collection of N free massive scalar fields,

S =
N∑

A=1

∫
d4x

√−g
{
∂μφA∂μφA − m2

Aφ2
A

}
. (2)

In the following we will often use the conformal time, τ =∫
dt/a(t) = −e−Ht (−∞ � τ � 0), and the rescaled field χA = aφA

which has the standard kinetic term. We will suppress the label A
hereafter for brevity.

Fourier component of χ satisfies the equation of motion (prime
denotes ∂τ ),

χ ′′
�k (τ ) +

{
|�k|2 + (

H−2m2 − 2
) 1

τ 2

}
χ�k(τ ) = 0. (3)

Quantization is done by setting

χ(τ , �x) =
∫

d3k

(2π)3

1√
2|�k|

[
u�k(τ )a�kei�k·�x + u∗

�k (τ )a†
�ke−i�k·�x] (4)

where u�k(τ ) is the solution of (3) which approaches u�k(τ ) →
e−i|�k|τ at early time τ → −∞. This condition ensures that the
flat space result is recovered in the short distance limit. The so-

lution is given by u�k(τ ) =
√

π
2 ei π

2 (ν+ 1
2 )

√
−|�k|τ H(1)

ν (−|�k|τ ) with

ν =
√

9
4 − m2 H−2. Asymptotic behavior at the late times (in the

super-horizon |�k|/a 
 H limit) is u�k ∼ (−|�k|τ )−ν+ 1
2 . Time depen-

dence factorizes from space dependence, as is clear from the fact
that |�k| dependence drops out from (3) in this limit. Fields with
small mass, mH−1 < 3

2 , do not oscillate in time. We will take the
mH−1 
 1 limit in the following formulas, since this is the case of
importance for our applications, as explained below.

The equal time two-point function of φ at late times is

〈
φ(τ , �x)φ(

τ , �x′)〉 = 1

a2(τ )

∫
d3k

(2π)3

1

2|k|
∣∣uk(τ )

∣∣2
ei�k(�x−�x′)

∼ H2

4π2β

(
Ha

∣∣�x − �x′∣∣)−β
, (5)

where we have taken the m2 H−2 
 1 limit, and defined

β = 2

3
m2 H−2. (6)

3. Einstein equations

Quantum fluctuations of the fields φ induce gravitational poten-
tial. Let us look at the (0, i) and (i, j) components of the Einstein
equation,

(
Ψ ′ + HΦ

)
,i = 4πGδT (S)

0i , (7)[
Ψ ′′ + H(2Ψ + Φ)′ + (

2H′ + H2)Φ + �

2
(Φ − Ψ )

]
δi j

− 1

2
(Φ − Ψ ),i j = 4πGδT (S)

i j (8)

where H = a′
a = − 1

τ . The l.h.s. is the Einstein tensor expanded to
the first order in metric fluctuations; Φ and Ψ are the two gauge
invariant combinations constructed from the scalar modes (see
e.g. [8]). On the r.h.s. we have energy–momentum tensor which
is quadratic in φ,

δTμν =
∑{

∂μφ∂νφ − 1

2
gμν

(
∂ρφ∂ρφ − m2φ2)}. (9)

The sum is taken over the species of the fields. The superscript (S)

denotes the scalar part (the part which can be written as deriva-
tives of a scalar), e.g.,

δT (S)
0i = ∂i

(
1

�
∂kδT0k

)
= 1

�
∂i∂k

(
φ′∂kφ

)
. (10)

We shall use the Einstein equation to express Φ and Ψ in terms
of the matter fields φ. We first find the difference Φ − Ψ from the
(i �= j) component of (8),

Φ − Ψ = −8πG
∑

s, s ≡ 3

2�2
∂i∂ j

(
∂iφ∂ jφ − δi j

3
∂kφ∂kφ

)

and substitute it into (7) to get

Φ ′ + HΦ = 4πG
∑{

−2s′ + 1

�
∂i

(
φ′∂iφ

)}
. (11)

At late times, the r.h.s. goes like (−τ )β−1, which implies Φ ∼
(−τ )β . The part containing s can be dropped when β 
 1, since
this gives smaller contribution in correlation functions than the
second term.1 Using the fact that time dependence (φ ∼ (−τ )β/2)
enters as a multiplicative factor, and ∂i(φ∂iφ) = 1

2 �φ2, we find

Φ = −
∑

πGβφ2 (12)

1 In correlation functions, ∂

∂xi 〈φ(x)φ(x′)〉 gives a factor of order β (and further
differentiation only gives order 1 factors like −(β + 1)). Correlators involving the
first term of (11) necessarily contain more of these factors than the ones involving
only the second term of (11).
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