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Single particle spectra based on modern effective interactions
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Abstract

The self-consistent Green’s function method is applied to 16O using a G-matrix and VUCOM as effective interactions, both derived from the
Argonne v18 potential. The present calculations are performed in a larger model space than previously possible. The experimental single particle
spectra obtained with the G-matrix are essentially independent of the oscillator length of the basis. The results shows that VUCOM better reproduces
spin–orbit splittings but tends to overestimate the gap at the Fermi energy.
© 2006 Elsevier B.V. All rights reserved.
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A fundamental problem in nuclear physics is how to obtain
descriptions of finite nuclei starting from a microscopic nuclear
Hamiltonian. Much progress has been achieved for few body
systems. The Green’s function Monte Carlo [1] technique is
able to give exact results up to A = 12, while the no-core shell
model [2] has been applied to even larger nuclei. A wide range
of exact methods is also available for very light systems [3].
In general, it has been found that both two- and three-nucleon
(2N and 3N) forces are required to reproduce the experimen-
tal observations. Other recent attempts to push the limits of ab
initio methods into the medium mass region have focused on
the nucleus of 16O and its neighbor isotopes [4,5]. These works
computed separation energies and spin orbit splittings of the
orbits near the Fermi level. Coupled cluster theory appears to
produce converged results for these nuclei [6]. These achieve-
ments have been possible by computing the contributions of
long-range correlations (LRC) directly within very large mod-
els spaces where, however, one still needs to employ a proper
effective interaction that accounts for the excluded degrees of
freedom. In particular the effects due to short-range correla-
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tions (SRC) can be separated efficiently by such partitioning
procedure, since they are characterized by high momenta de-
grees freedom [7].

Several ab initio methods employ similar partitioning tech-
niques. Typically, two classes of microscopic approaches are
possible to derive an effective interaction from a realistic
nucleon–nucleon force [8]. Bloch–Horowitz theory makes use
of the Feshbach projection formalism to devise an energy de-
pendent interaction [9,10]. This gives solutions for every eigen-
state with nonzero projection onto the model space, however,
the energy dependence severely complicates the calculations.
The G-matrix interaction [11], obtained by solving the Bethe–
Goldstone equation, is also energy dependent. Alternatively,
one can employ a proper unitary transformation to map a finite
set of solutions of the initial Hamiltonian into states belong-
ing to a numerically tractable space. In this case, one has the
advantage to work with an energy independent interaction. Ex-
amples of such approaches are the Lee–Suzuki method [12]
and the unitary correlator operator method (UCOM) [13–15].
The UCOM formalism is such that one can apply the inverse
transformation to reinsert SRC into the nuclear wave function.
A discussion of the similarities and differences between Lee–
Suzuki and Bloch–Horowitz is given in Ref. [8]. Differently,
one can derive a low momentum force, indicated as Vlow-k
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[16], by using the renormalization group or the Lee–Suzuki
method [8]. It should be noted that both Vlow-k , and VUCOM are
phase shift equivalent at low energy and can be regarded as bare
realistic interactions in this regime. The above methods, in prin-
ciple, generate effective many-nucleon forces in addition to the
2N interactions and the intrinsic 3N ones. In practice, however,
in calculating medium and large nuclei one wish to avoid as
much as possible these complications, possibly by choosing in-
teractions and model spaces that require weak overall 3N terms.
It is therefore important to investigate how truncating to a 2N
Hamiltonian affects the results for the different approaches out-
lined above.

In Ref. [17] we proposed to employ a set of Faddeev equa-
tions within the self-consistent Green’s function (SCGF) ap-
proach [7] to obtain a microscopic description of LRC. This
allows to couple simultaneously quasiparticles (qp) and quasi-
holes (qh) to both particle–hole (ph) and particle–particle/hole–
hole (pp/hh) collective excitations. The latter are eventually also
expressed in terms of dressed qp and qh modes. Such formal-
ism was later applied to 16O to investigate mechanisms that
could possibly quench the spectroscopic factors of mean field
orbits [18]. These calculations were already performed in a
no-core fashion. However, the model space employed was still
somewhat limited and phenomenological corrections were ap-
plied to tune the values of specific single particle (sp) energies
(doing this allows studying correlations by artificially suppress-
ing the couplings among selected excitation modes). Note that
here and in the following we use the terms sp energies and sp
spectra to refer to the poles of the one-body Green’s function
(defined below Eq. (1)). These represent the excitation energies
of the A±1 neighbor nuclei, which are observable quantities. In
this Letter the calculations of Ref. [18] are repeated by avoid-
ing any phenomenology and employing a large model space.
We discuss the results of 2N interactions belonging to the two
types discussed above, namely a standard G-matrix and VUCOM.

We consider the calculation of the sp Green’s function
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from which both the one-hole and one-particle spectral
functions, for the removal and addition of a nucleon, can
be extracted. In Eq. (1), X n
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excitation energies with respect to the A-body ground state.
The one-body Green’s function can be computed by solving the
Dyson equation [19,20],
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where the irreducible self-energy Σ�
γδ(ω) acts as an effective,

energy-dependent, potential that governs the single particle be-
havior of the system. The self-energy is expanded in a Faddeev
series as in Fig. 1. This couples the exact propagator gαβ(ω)

(which is itself a solution of Eq. (2)) to other phonons in the

Fig. 1. Example of a Feynman diagram included in the all-order summation
generated by the set of Faddeev equations. Double lines represent the dressed
one-particle Green’s function g(ω), which propagates quasiparticles (rightward
arrows) and quasiholes (leftward arrows). The ellipses propagate collective ex-
citations of the nucleus (Eqs. (3) and (4)).

system [17]. The relevant information regarding ph and pp/hh
collective excitations is included in the polarization and the
two-particle propagators. Respectively,
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which describe the one-body response and the propagation of
two-particles/two-holes. In this work, Π(ω) and gII(ω) are ob-
tained by solving the dressed RPA (DRPA) equations [21,22],
which account for the redistribution of strength in the sp spec-
tral function. Since this information is carried by the correlated
propagator gαβ(ω), Eq. (2), the SCGF formalism requires an
iterative solution. It can be proven that full self-consistency
guarantees to satisfy the conservation of the number of parti-
cles and other basic quantities [23].

The coupled cluster studies of Refs. [6,24] found that eight
major harmonic oscillator shells can be sufficient to obtain con-
verging results for 16O with G-matrix interactions. At the same
time, the experience with the calculations of Ref. [18] suggests
that high partial waves do not contribute sensibly. In this work,
all the orbits of the first eight shells with orbital angular momen-
tum l � 4 were included. Inside this model space a G-matrix
and the VUCOM potential were employed as effective interac-
tions. The former was computed using the CENS library rou-
tines [11,25]. For the latter, the UCOM matrix-elements code
[26] was employed with the constraint Iϑ = 0.09 fm3. This
choice of the UCOM correlator reproduces, in perturbation the-
ory, the binding energies of several nuclei up to 208Pb [27]. In
both cases the Argonne v18 potential [28] was used as start-
ing interaction. However, we chose to neglect the Coulomb and
the other charge independence breaking terms in the present
work. The Hartree–Fock (HF) equations (Brueckner–Hartree–
Fock (BHF) for the G-matrix) were first solved for the un-
perturbed propagator g

(B)HF
αβ (ω), which was employed in the

first calculation. After that, the (dressed) solution gαβ(ω) was
used to generate Π(ω) and gII(ω) in DRPA and then to solve
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