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We discuss the unitarity motivated relations among the elastic cross-section, slope parameter and 
inelastic cross-section of the high energy pp interaction. In particular, the MacDowell-Martin unitarity 
bound is written down in another form to make a relation between the elastic and inelastic quantities 
more transparent. On the basis of an unitarity motivated relation we argue that the growth with energy 
of the elastic to total cross-section ratio is a consequence of the increasing with energy of the inelastic 
interaction intensity. The latter circumstance is an underlying reason for the acceleration of the slope 
parameter growth, for the slowing of the growth of the elastic to total cross-section ratio and for other 
interesting phenomena, which are observed in the TeV energy range. All of this confirms the old idea 
that the elastic scattering is a shadow of the particle production processes.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A growth with energy of the pp total cross-section σtot(s) =
σel(s) + σinel(s) is due to that of the elastic σel(s) and the inelastic 

σinel(s) cross-sections [1–7]. If the growth of σinel(s) =
N(s)∑

n, inel
σn(s)

can be formally attributed to a huge number of open inelastic 
channels N(s) [8], the underlying reasons of the σel(s) growth 
are unknown. On the other hand, the unitarity condition relates 
the properties of the elastic scattering amplitude with the contri-
bution from the inelastic channels and the elastic scattering can 
therefore be considered as a shadow of the particle production 
processes [9]. In other words, due to unitarity there are some 
correlations between behaviour of the characteristics of the elas-
tic and inelastic scattering. Indeed, the MacDowell-Martin unitarity 
bound [10] gives such a relation among the total cross-section, the 
elastic cross-section and the slope parameter of the imaginary part 
of the elastic scattering amplitude

B I(s) ≡ 2[ d

dt
ln |Im T (s, t)|]t=0 ≥ σ 2

tot(s)

18πσel(s)
. (1)
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In the present note we rewrite this inequality in another form to 
make a relation between the elastic and inelastic quantities more 
transparent.

According to the optical theorem (which is a consequence of 
the unitarity condition) the elastic differential cross-section at zero 
value of the square of the four-momentum transfer, t , is related to 
the total cross-section as

dσ

dt
|t=0 = σ 2

tot(s)(1 + ρ2(s))

16π
, ρ(s) = Re T (s,0)

Im T (s,0)
. (2)

The slope of the forward diffraction peak, B(s), and (dσ/dt)t=0 are 
determined experimentally by extrapolation of the nuclear elastic 
scattering differential cross-section data at small values of t to the 
forward direction t = 0 using the exponential form

dσ

dt
= dσ

dt
|t=0 exp(Bt). (3)

The experimental value of σtot(s) is then calculated from Eq. (2)
(the ratio of the real to the imaginary part of the elastic scattering 
amplitude in the forward direction, ρ(s), is taken in this method 
from the dispersion relations or from global model extrapolations). 
If the local slope parameter, B(s, t) = d ln(dσ/dt)/dt , is approx-
imately equal to B(s) in the essential for the value of integral 
σel(s) = ∫

dt(dσ/dt) region 0 ≤ |t| ≤ |t0|, where |t0| ≈ 0.4 GeV2, 
the elastic cross-section is given by the following formula [11]
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Fig. 1. The elastic (σel), inelastic (σinel), total (σtot) cross-section for pp collisions as a function of √s [1–7], including the p̄p data at √s = 546, 900, 1800 GeV [14]. The first 
on top line is a fit of the total cross-section data by the COMPETE collaboration [33]. The dashed line is a fit of the elastic cross-section data by the TOTEM collaboration [7]. 
The dash-dotted and continuous lines refer to the σinel = (σtot − σel) and (σinel − σel) = (σtot − 2 σel) respectively and are obtained as the differences between the σtot and 
σel fits.

σel(s) = σ 2
tot(s)(1 + ρ2(s))

16π B(s)
. (4)

At the ISR energies this formula gives a slightly underestimated 
value for σel(s) because the local slope decreases noticeably with 
|t| in the 0 ≤ |t| ≤ 0.4 GeV2 range [12], but beyond the ISR en-
ergies the relation (4) is practically exact [2–7]. The luminosity-
independent measurements at 7 TeV [4] give much the same val-
ues for σel(s), σinel(s) and σtot(s) as the discussed above method 
and confirm therefore the validity of formula (4). At the LHC 
energies the local slope reveals a trend to increase with |t| at 
|t| � 0.2 GeV2 [13] due to the nearness of the dip structure of 
the differential cross-section. For that reason, beyond the LHC en-
ergies the formula (4) will give a somewhat overestimated value 
for σel(s). So, in the 102 �

√
s � 5 ∗ 104 GeV energy range Eq. (4)

can be considered as a practically exact relation. We use it to see 
the connections between the elastic and inelastic quantities. Let us 
note that the MacDowell-Martin bound is close to Eq. (4) because 
according to the experimental data ρ2(s) � 1 and B I(s) ≈ B(s).

It is an astonishing experimental fact that the elastic cross-
section grows faster than the total cross-section, that is the ratio 
σel(s)/σtot(s) increases with energy [14,2–7]. According to Eq. (4)
this growth is the same as the σtot(s)/B(s) growth (the impact 
of the (1 + ρ2(s)) factor is negligible), which can be interpreted 
as an increase of the interaction intensity in the central part of 
the interaction region in the impact parameter space [15–17]. In-
deed, if the cross-sections σel(s), σinel(s) grow only due to the 
increasing with energy of the radius of the interaction region 
R(s), i.e. σel, σinel ∼ R2, then the ratios σel/B, σinel/B are energy-
independent [1], since B(s) = 0.5R2(s). Hence, the energy growth 
of the σel/B, σinel/B ratios has a dynamical, non geometrical na-
ture and will be referred to as the increasing of the elastic and 
inelastic interaction intensity respectively.

From σtot = σel + σinel it is evident that the σel/σtot growth is 
equivalent to the decreasing of the σinel/σtot and σinel/σel ratios. 
However, as can be seen from the experimental data [1–7], the 
ratio σinel(s)/B(s) is an increasing function of energy. It means that 
the inelastic cross-section grows not only due to the growth of 

the radius of the interaction region but also due to the increasing 
of the inelastic interaction intensity in the expanding with energy 
central part of the interaction region [18–24]. As we will see, the 
relation (4) enables to get the ratios σel/B , σel/σtot and σel/σinel
in the form of increasing functions of ratio (σinel/B). Therefore, the 
growth of these ratios with energy is a consequence (a “shadow”) 
of the increasing of the inelastic interaction intensity.

According to the experimental data [1–7] the difference (σinel −
σel) = (σtot − 2σel) monotonically increases with energy (see 
Fig. 1). Due to the σel/σtot growth the ratios of this difference 
to the σel, σinel and σtot decrease with energy but the ratio 
(σinel − σel)/B , as can be seen from Eq. (4), grows with energy 
up to ∼ 3 TeV (where σel/σtot = 0.25 [7]), reaches its maximum 
value and then decreases with energy. There is evidence that ap-
proximately at this energy the slope B(s) begins to accelerate its 
growth [6,7] (the discussions of this new phenomenon in the con-
text of different models can be found in Refs. [25–31]). As can be 
seen from Ref. [7], the curvature of the σel/σtot growth changes its 
sign from positive to negative also in this energy range [16], and 
therefore the ratio σel/σtot slows down its growth. As we will see, 
the unitarity motivated Eq. (4) enables to consider all these phe-
nomena, as well as the σel/σtot growth itself, as a consequence of 
the increasing of the intensity of the inelastic interaction (σinel/B).

In Section 2 we give a few new forms of the MacDowell-Martin 
unitarity bound, which relate the elastic and inelastic quantities. 
The consequences of Eq. (4) are studied in Section 3, where, in 
addition, we discuss some phenomenological arguments in favour 
of the shadow origin of the σel(s) growth. A brief summary and 
discussion are given in Section 4.

2. The MacDowell-Martin bound

The MacDowell-Martin unitarity bound (1) can be written as

σ 2
tot(s) ≤ β̃(s)σel(s), β̃(s) ≡ 18π B I(s). (5)

Taking into account a relation σel = (σtot − σinel), we can rewrite 
Eq. (5) in the following equivalent form
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