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Classical and semi-classical energy states of relativistic electrons bounded by a massive and charged core
with the charge-mass radio Q /M and macroscopic radius Rc are discussed. We show that the energies of
semi-classical (bound) states can be much smaller than the negative electron mass-energy (−mc2), and
energy-level crossing to negative energy continuum occurs. Electron–positron pair production takes place
by quantum tunneling, if these bound states are not occupied. Electrons fill into these bound states and
positrons go to infinity. We explicitly calculate the rate of pair-production, and compare it with the rates
of electron–positron production by the Sauter–Euler–Heisenberg–Schwinger in a constant electric field. In
addition, the pair-production rate for the electro-gravitational balance ratio Q /M = 10−19 is much larger
than the pair-production rate due to the Hawking processes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As reviewed in the recent report [1], very soon after the Dirac
equation for a relativistic electron was discovered [2,3], Gordon [4]
(for all Z < 137) and Darwin [5] (for Z = 1) found its solution in
the point-like Coulomb potential V (r) = −Zα/r, they obtained the
well-known Sommerfeld’s formula [6] for energy spectrum,

E (n, j) = mc2
[

1 +
(

Zα

n − |K | + (K 2 − Z 2α2)1/2

)2]−1/2

, (1)

where the fine-structure constant α = e2/h̄c, the principle quan-
tum number n = 1,2,3, . . . and

K =
{

−( j + 1/2) = −(l + 1), if j = l + 1
2 , l � 0,

( j + 1/2) = l, if j = l − 1
2 , l � 1,

(2)

l = 0,1,2, . . . is the orbital angular momentum corresponding to
the upper component of Dirac bi-spinor, j is the total angular mo-
mentum. The integer values n and j label bound states whose
energies are E (n, j) ∈ (0,mc2). For the example, in the case of the
lowest energy states, one has

E (1S 1
2
) = mc2

√
1 − (Zα)2, (3)
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E (2S 1
2
) = E (2P 1

2
) = mc2

√
1 + √

1 − (Zα)2

2
, (4)

E (2P 3
2
) = mc2

√
1 − 1

4
(Zα)2. (5)

For all states of the discrete spectrum, the binding energy mc2 −
E (n, j) increases as the nuclear charge Z increases. No regular so-
lution with n = 1, l = 0, j = 1/2 and K = −1 (the 1S1/2 ground
state) is found for Z > 137, this was first noticed by Gordon in his
pioneer paper [4]. This is the problem so-called “Z = 137 catastro-
phe”.

The problem was solved [7–14] by considering the fact that
the nucleus is not point-like and has an extended charge dis-
tribution, and the potential V (r) is not divergent when r → 0.
The Z = 137 catastrophe disappears and the energy-levels E (n, j)
of the bound states 1S , 2P and 2S , . . . smoothly continue to
drop toward the negative energy continuum (E− < −mc2), as Z
increases to values larger than 137. The critical values Zcr for
E (n, j) = −mc2 were found [9,11–14,17–19]: Zcr � 173 is a critical
value at which the lowest energy-level of the bound state 1S1/2
encounters the negative energy continuum, while other bound
states 2P1/2,2S3/2, . . . encounter the negative energy continuum
at Zcr > 173, thus energy-level crossings and productions of elec-
tron and positron pair takes place, provided these bound states are
unoccupied. We refer the readers to [11–19] for mathematical and
numerical details.

The energetics of this phenomenon can be understood as fol-
lows. The energy-level of the bound state 1S1/2 can be estimated
as follows,
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E (1S1/2) = mc2 − Ze2

r̄
< −mc2, (6)

where r̄ is the average radius of the 1S1/2 state’s orbit, and the
binding energy of this state Ze2/r̄ > 2mc2. If this bound state is
unoccupied, the bare nucleus gains a binding energy Ze2/r̄ larger
than 2mc2, and becomes unstable against the production of an
electron–positron pair. Assuming this pair-production occur around
the radius r̄, we have energies of electron (ε−) and positron (ε+):

ε− =
√(

c|p−|)2 + m2c4 − Ze2

r̄
;

ε+ =
√(

c|p+|)2 + m2c4 + Ze2

r̄
, (7)

where p± are electron and positron momenta, and p− = −p+ . The
total energy required for a pair production is,

ε−+ = ε− + ε+ = 2
√(

c|p−|)2 + m2c4, (8)

which is independent of the potential V (r̄). The potential ener-
gies ±eV (r̄) of electron and positron cancel each other and do not
contribute to the total energy (8) required for pair production. This
energy (8) is acquired from the binding energy (Ze2/r̄ > 2mc2) by
the electron filling into the bound state 1S1/2. A part of the bind-
ing energy becomes the kinetic energy of positron that goes out.
This is analogous to the familiar case that a proton (Z = 1) catches
an electron into the ground state 1S1/2, and a photon is emitted
with the energy not less than 13.6 eV.

In this Letter, we study classical and semi-classical states of
electrons, electron–positron pair production in an electric potential
of macroscopic cores with charge Q = Z |e|, mass M and macro-
scopic radius Rc .

2. Classical description of electrons in potential of cores

2.1. Effective potentials for particle’s radial motion

Setting the origin of spherical coordinates (r, θ,φ) at the center
of such cores, we write the vectorial potential Aμ = (A, A0), where
A = 0 and A0 is the Coulomb potential. The motion of a relativis-
tic electron with mass m and charge e is described by its radial
momentum pr , total angular momenta pφ and the Hamiltonian,

H± = ±mc2

√
1 +

(
pr

mc

)2

+
(

pφ

mcr

)2

− V (r), (9)

where the potential energy V (r) = e A0, and ± corresponds for
positive and negative energies. The states corresponding to nega-
tive energy solutions are fully occupied. The total angular momen-
tum pφ is conserved, for the potential V (r) is spherically symmet-
ric. For a given angular momentum pφ = mv⊥r, where v⊥ is the
transverse velocity, the effective potential energy for electron’s ra-
dial motion is

E±(r) = ±mc2

√
1 +

(
pφ

mcr

)2

− V (r), (10)

where ± indicates positive and negative effective energies, outside
the core (r � Rc), the Coulomb potential energy V (r) is given by

V out(r) = Ze2

r
. (11)

Inside the core (r � Rc), the Coulomb potential energy is given by

V in(r) = Ze2

2Rc

[
3 −

(
r

Rc

)2]
, (12)

Fig. 1. In the case of point-like charge distribution, we plot the positive and neg-
ative effective potential energies E± (10), pφ/(mcRc) = 2 and Ze2 = 1.95mc2 Rc ,
to illustrate the radial location RL (14) of stable orbits where E+ has a minimum
(15). All stable orbits are described by cpφ > Ze2. The last stable orbits are given
by cpφ → Ze2 + 0+ , whose radial location RL → 0 and energy E → 0+ . There is no
any stable orbit with energy E < 0 and the energy-level crossing with the negative
energy spectrum E− is impossible.

where we postulate the charged core has a uniform charge dis-
tribution with constant charge density ρ = Ze/V c , and the core
volume V c = 4π R3

c /3. Coulomb potential energies outside the core
(11) and inside the core (12) are continuous at r = Rc . The electric
field on the surface of the core,

Es = Q

R2
c

= λe

Rc
Ec, β ≡ Ze2

mc2 Rc
(13)

where the electron Compton wavelength λe = h̄/(mc), the critical
electric field Ec = m2c3/(eh̄) and the parameter β is the electric
potential-energy on the surface of the core in unit of the electron
mass-energy.

2.2. Stable classical orbits (states) outside the core

Given different values of total angular momenta pφ , the stable
circulating orbits RL (states) are determined by the minimum of
the effective potential E+(r) (10) (see Fig. 1), at which dE+(r)/dr =
0. We obtain stable orbits locate at the radii RL outside the core,

RL =
( p2

φ

Ze2m

)√
1 −

(
Ze2

cpφ

)2

, RL � Rc, (14)

for different pφ-values. Substituting Eq. (14) into Eq. (10), we find
the energy of electron at each stable orbit,

E ≡ min(E+) = mc2

√
1 −

(
Ze2

cpφ

)2

. (15)

For the condition RL � Rc , we have(
Ze2

cpφ

)2

� 1

2

[
β
(
4 + β2)1/2 − β2], (16)

where the semi-equality holds for the last stable orbits outside the
core RL → Rc + 0+ . In the point-like case Rc → 0, the last stable
orbits are

cpφ → Ze2 + 0+, RL → 0+, E → 0+. (17)

Eq. (15) shows that there are only positive or null energy solu-
tions (states) in the case of a point-like charge, which corresponds
to the energy spectra equations (3), (4), (5) in quantum mechanic
scenario. While for pφ � 1, radii of stable orbits RL � 1 and ener-
gies E → mc2 + 0− , classical electrons in these orbits are critically
bound for their banding energy goes to zero. We conclude that
the energies (15) of stable orbits outside the core must be smaller
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