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We investigate the Hamiltonian structure of linearized extended Hořava–Lifshitz gravity in a flat
cosmological background following the Faddeev–Jackiw’s Hamiltonian reduction formalism. The
Hamiltonian structure of extended Hořava–Lifshitz gravity is similar to that of the projectable version
of original Hořava–Lifshitz gravity, in which there is one primary constraint and so there are two physical
degrees of freedom. In the infrared (IR) limit, however, there is one propagating degree of freedom in
the general cosmological background, and that is coupled to the scalar graviton mode. We find that
extra scalar graviton mode in an inflationary background can be decoupled from the matter field in the
IR limit. But it is necessary to go beyond linear order in order to draw any conclusion of the strong
coupling problem.

© 2011 Elsevier B.V. All rights reserved.

The reconciliation of gravity and quantum theory, which is important to understand the very early stage of our Universe and the black
hole, is a very challenging task in theoretical physics. Among the several proposals of quantum theory of gravity, recently Hořava [1]
proposed a UV complete, non-relativistic gravity theory which is power-counting renormalizable giving up the Lorentz invariance. Since
then, many paid attention to this scenario to apply to the black hole [2], cosmology [3,4] and observational tests [5]. In spite of its many
appealing properties, it seems to suffer from many problems [6,7] such as instability, strong coupling, renormalizability etc.

In order to alleviate the original Hořava–Lifshitz gravity’s problem, in [8] the extended version of Hořava–Lifshitz gravity is proposed,
in which the new degree of freedom by taking the spatial gradient of a lapse function is introduced without violating the symmetry of
the action. They argued that the strong coupling problem of the scalar graviton mode in the IR limit would be solved. There still remains
some debate on strong coupling problem in extended version as well as on the physical degrees of freedom [9,10].

In this Letter, following the previous work [11] of one of the authors, we investigate the Hamiltonian structure of linearized extended
Hořava–Lifshitz gravity in a cosmological background using the Faddeev–Jackiw approach [12]. First, we derive the quadratic action in the
extended Hořava–Lifshitz gravity model and then obtain constraints and Hamiltonian. Through the investigation of the Poisson algebra,
the physical degrees of freedom are exactly counted and we analyze the Hamiltonian structures. Next, we obtain the equations of motion
of the physical degrees of freedom and finally we briefly comment about the strong coupling issues in our case in the IR limit.

We consider the Arnowitt–Deser–Misner (ADM) metric which is given by

ds2 = (−N2 + Ni N
i)dt2 + 2Ni dt dxi + γi j dxi dx j, (1)

where N is the lapse function, Ni are shift vectors, and γi j is the spatial 3 metric. The Hořava–Lifshitz gravity action in the ADM metric
with a single scalar field is

S =
∫

d4x N
√

γ

[
1

2κ2

(
Kij K i j − λK 2) − V + 1

2N2

(
φ̇ − Ni∂iφ

)2 − Z(φ) − V (φ)

]
. (2)

The extrinsic curvature Kij and its trace are written in terms of the ADM metric (1) as

Kij = 1

2N

(
∂i N j + ∂ j Ni − ∂γi j

∂t

)
, (3)
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K = γ i j Ki j = K i
i . (4)

For extended Hořava–Lifshitz gravity [8], the gravitational potential term V in the action (2) depends on γi j , its spatial derivative and
on 3-dimensional vector ai constructed from the lapse function N(t,x) as

ai = ∂i N(t,x)

N(t,x)
, (5)

which represents the proper acceleration of the vector field of unit normals to the foliation surfaces [6]. Under the anisotropic scaling
transformations

x → lx, t → lzt, (6)

the z = 3 theory in the UV is power-counting renormalizable, so the potential in the action (2) can have at most 6-th order spatial
derivative terms. With these spirits, the gravitational potential for extended Hořava–Lifshitz gravity can take the form

V = −ξ R − αaia
i + f1 R2 + f2 Rij Ri j + f3 R∂ia

i + f4ai∂
2ai + g1(∂i R)2 + g2∂i R jk∂

i R jk + g3∂
2 R∂ia

i + g4ai∂
4ai, (7)

where ξ , α, fn , gn are constants and ∂2 = ∂i∂
i . R and Rij are 3-dimensional Ricci scalar and Ricci tensor, respectively. Since we are

interested in the linear analysis of extend Hořava–Lifshitz gravity, the only terms in (7) relevant to the linear analysis on a flat cosmological
background are included [8,13]. Most general gravitational potential form in extended Hořava–Lifshitz gravity can be found in Ref. [8]. It
is known that the action (2) with the gravitational potential (7) is invariant under the foliation conserving transformations

x → x + g(t,x), t → t + f (t). (8)

The Z(φ) in (2) is the matter part potential constructed from the spatial derivative of a scalar field, which is given by

Z(φ) =
3∑

n=1

ξn∂
(n)
i φ∂ i(n)φ. (9)

The superscript (n) denotes the n-th spatial derivative.
In order to derive the background and linear perturbation equations of motion by varying the action, we expand the metric and the

scalar field to the linear order as

N = a(η)(1 + Φ), Ni = a(η)2∂iβ, γi j = a(η)2(δi j + hij) = a(η)2
(

(1 − 2R)δi j + 2

(
∂i∂ j − 1

3
δi j∂

2
)

E

)
, (10)

and

φ(η, x) = φ0(η) + δφ(η, x), (11)

where the parameter a(η) is a scale factor and η is a conformal time. In this Letter, we only consider the scalar mode perturbations.
From the linear order of the action (2)

δ1 S =
∫

d4x a2
[{

−3(1 − 3λ)

2κ2
H2 − 1

2
φ′2

0 − a2 V 0

}
Φ +

{
− (1 − 3λ)

4κ2

(
H2 + 2H′) + 1

2

(
1

2
φ′2

0 − a2 V 0

)}
hk

k

+ {−φ′′
0 − 2Hφ′

0 − a2 Vφ

}
δφ

]
, (12)

where H = a′
a and the prime denotes the derivative with respect to η, we can obtain the background equation of motion in a flat

cosmological background

3(1 − 3λ)

2κ2
H2 = −

(
1

2
φ′2

0 + a2 V 0

)
, (13)

(1 − 3λ)

2κ2

(
H2 + 2H′) = 1

2
φ′2

0 − a2 V 0, (14)

φ′′
0 + 2Hφ′

0 + a2 Vφ = 0. (15)

By expanding the action up to 2nd order in terms of the perturbed quantities, the quadratic action yields

δ2 S =
∫

d4x a2
[

1

2κ2
(1 − 3λ)

{
3H2Φ2 + 2HΦ∂2(β − E ′) + 6HΦψ ′ + 3ψ ′2 + 2ψ ′∂2(β − E ′)} + 1

2κ2
(1 − λ)

[
∂2(β − E ′)]2

− αΦ∂2Φ − 1

a2

(
∂2ψ

)2
(16 f1 + 6 f2) − f3

4

a2
∂2ψ∂2Φ + f4

a2
∂2Φ∂2Φ + 1

a4
(16g1 + 6g2)∂

2ψ
(
∂2)2

ψ − g3
4

a4

(
∂2)2

ψ∂2Φ

+ g4
1

a4
∂2Φ∂2∂2Φ + 2ξ(2Φ − ψ)∂2ψ + 1

2
δφ′2 − φ′

0Φδφ′ + 1

2
φ′2

0 Φ2 − a2δZ − 1

2
a2 Vφφ(δφ)2 − a2 VφΦδφ + 3φ′

0ψ
′δφ

+ φ′
0δφ∂2(β − E ′)], (16)
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