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We propose a new class of inflation models in which the coefficient of the inflaton kinetic term rapidly
changes with energy scale. This naturally occurs especially if the inflaton moves over a long distance
during inflation as in the case of large-scale inflation. The peculiar behavior of the kinetic term opens up
a new way to construct an inflation model. As a concrete example we construct a linear inflation model
in supergravity. It is straightforward to build a chaotic inflation model with a fractional power along the
same line. Interestingly, the potential takes a different form after inflation because of the running kinetic
term.

© 2010 Elsevier B.V. All rights reserved.

The inflation has been strongly motivated by the observa-
tion [1], while it is a non-trivial task to construct a successful
inflation model. A successful inflaton model must explain several
features of the density perturbation, but properties of the inflaton
are not well understood. It is often assumed that, in the slow-
roll inflation paradigm, the inflaton is a weakly coupled field, and
therefore the kinetic term is simply set to be the canonical form
during inflation. This seems justified because the typical energy
scale of inflation is given by the Hubble parameter, which remains
almost constant during inflation. However, there is another impor-
tant energy scale, namely, the inflaton field. Even in the slow-roll
inflation, the motion of the inflaton is not negligible and it may
travel a long distance during the whole period of inflation. In par-
ticular, in the case of large-scale inflation such as a chaotic infla-
tion model [2], the inflaton typically moves over a Planck scale
or even larger within the last 60 e-foldings [3]. Then, it seems
quite generic that the precise form of the kinetic term changes
during the course of inflation. In some cases, the change could be
so rapid, that it significantly affects the inflaton dynamics. In this
Letter, we construct a model in which the coefficient of the kinetic
term grows rapidly with the inflaton field value, but in a controlled
way. By doing so, we construct a linear term inflation model in the
supergravity framework (see Ref. [4] for the quadratic model). The
realization of the linear term inflation model in the string theory
was given in Ref. [5]. We also show that a chaotic inflation model
with a fractional power can be straightforwardly constructed along
the same line.

Before going to a realistic inflation model, let us give our basic
idea. Suppose that the inflaton field φ has the following kinetic
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term,

L K = 1

2
f (φ)∂μφ∂μφ, (1)

and that the inflaton field is canonically normalized at the poten-
tial minimum:

f (φmin) = 1. (2)

However, this does not necessarily mean that f (φ) remains close
to 1 during inflation, especially if the inflaton moves over some
high scale, e.g., the GUT or Planck scale. Suppose that the behavior
of f (φ) can be approximated by f (φ) ≈ n2φ2n−2 with an integer
n over a certain range of φ. Then, when expressed in terms of the
canonically normalized inflaton field, χ ≡ φn , the scalar potential
V (φ) is modified to be

V (φ) → V
(
χ1/n). (3)

For instance, if n = 2, the quadratic potential, V (φ) ∝ φ2, becomes
a linear term V (χ) ∝ χ . Therefore, such a strong dependence of
the kinetic term on the inflaton field changes the inflation dynam-
ics significantly. In particular, the large coefficient of the kinetic
term is advantageous for inflation to occur, since the effective po-
tential becomes flatter.

Now let us construct a linear term inflation model in supergrav-
ity. In this inflation model, the inflaton field has a scalar potential
linearly proportional to the inflaton, V (φ) ∝ φ. For the inflation
to last for the 60 e-foldings, the inflaton field must take a value
greater than the Planck scale, which is difficult to implement in
supergravity because of the exponential prefactor in the scalar po-
tential. Therefore we need to introduce some sort of shift symme-
try, which suppresses the exponential growth of the potential.
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We introduce a chiral superfield, φ, and require that the Kähler
potential for φ is invariant under the following transformation;

φ2 → φ2 + α for α ∈ R and φ �= 0, (4)

which means that a composite field χ ∼ φ2 transforms under a
Nambu–Goldstone like shift symmetry. This is equivalent to im-
posing a hyperbolic rotation symmetry (or equivalently SO(1,1))
on (φR , φI ), where φR and φI are the real and imaginary compo-
nents, φ = (φR + iφI )/

√
2.

The Kähler potential must be a function of (φ2 − φ†2):

K = ic
(
φ2 − φ†2) − 1

4

(
φ2 − φ†2)2 + · · · , (5)

where c is a real parameter of O (1) and the Planck unit is adopted.
Note that the |φ|2 term, which usually generates the kinetic term
for φ, is forbidden by the symmetry. Instead, the kinetic term
arises from the second term, and the coefficient of the kinetic term
will be proportional to |φ|2. Note that the lowest component of the
Kähler potential vanishes for either φR = 0 or φI = 0. This feature
is essential for constructing a chaotic inflation model in supergrav-
ity.

Let us add a symmetry breaking term, �K = κ |φ|2, to cure the
singular behavior of the Kähler metric at the origin. Here κ 
 1
is a real numerical coefficient, and the smallness is natural in the
’t Hooft’s sense [6]. There could be other symmetry breaking terms,
but, throughout this Letter we assume that those symmetry break-
ing terms are soft in a sense that the shift symmetry remains a
good symmetry at large enough φ. The kinetic term of the scalar
field then becomes

L K = (
κ + 2|φ|2 + · · ·)∂μφ†∂μφ, (6)

where the higher-order terms expressed by the dots contain terms
proportional to (φ2 − φ†2). Let us drop the higher-order terms for
the moment. As demonstrated later, the higher-order terms do
not change the form of the kinetic term. For a large field value
|φ| � √

κ , the coefficient of the kinetic term grows with the field
value, which makes the potential flatter. The canonically normal-
ized field is χ = φ2/

√
2, as expected. In a sense, χ is a more

suitable dynamical variable to describe the system satisfying the
shift symmetry (4). On the other hand, for a small field value of
|φ| 
 √

κ , the canonically normalized field is
√

κφ. Thus, φ2 and
φ are the dynamical variables for high and low scales, respectively.

We can interpret the above phenomenon in the following way.
If we go to high energy scales, namely the large field value φ,
the self-interaction in the Kähler potential becomes strong, and
the scalar field forms a bound state φ2. On the other hand,
as φ becomes small, the self-coupling becomes smaller and the
symmetry-breaking term becomes more relevant. Thus φ2 breaks
up and φ becomes the suitable variable. Such a phenomenon of
forming a bound state seems quite generic if one considers a large-
scale inflation in which the inflaton takes a very large field value
during inflation. Because of the strong self-interactions, the in-
flaton kinetic term runs with scales, and the inflaton dynamics
is significantly changed. The novelty here is the existence of the
shift symmetry, without which we cannot control the effect of the
higher order terms on the inflationary dynamics. We will come
back to this point later.

In order to construct a realistic inflation model, we consider the
following Kähler and super-potentials1

1 One can add an additional breaking term in the superpotential which induces
a periodic potential for ϕ [5]. The interesting feature may be found in the non-
Gaussianity in this case [7].

K = κ |φ|2 + ic
(
φ2 − φ†2) − 1

4

(
φ2 − φ†2)2 + |X |2, (7)

W = mXφ, (8)

where both κ and m break the symmetry, and so we assume κ 
 1
and m 
 1.2 These small parameters are naturally understood in
’t Hooft’s sense. The superpotential produces the inflaton potential.
We assume that X and φ have U(1)R charges 2 and 0, respectively.
We assign a Z2 symmetry under which both X and φ flip the sign.

The Lagrangian is given by

L = (
κ + 2|φ|2)∂μφ†∂μφ + ∂μ X†∂μ X − V (9)

with

V = eK (|D X W |2 K X X̄ + |Dφ W |2 K φφ̄ − 3|W |2). (10)

The scalar potential looks complicated, but it can be reduced to a
simple form during inflation. One can show that, during inflation,
X acquires a mass of the order of the Hubble scale and is stabilized
at the origin, if |c| � 1.3 Then the scalar potential becomes

V ≈ 1

2
e

κ
2 (φ2

R+φ2
I )−2cφRφI +φ2

Rφ2
I m2(φ2

R + φ2
I

)
. (11)

The flat direction is given by φRφI = constant because of the sym-
metry (4). Therefore if φR has a very large value, φI is stabilized
at a point where the Kähler potential is minimal. For φR > 1 and
κ 
 1, φI is stabilized at

φI ≈ c

φR
. (12)

Here and in what follows we focus on the case of φR > 0 and
φI > 0 without loss of generality. The scalar potential is then re-
duced to the following form:

V ≈ 1

2
e

κ
2 (φ2

R+ c2

φ2
R

)−c2

m2
(

φ2
R + c2

φ2
R

)
, (13)

for |φR | > 1. Since we explicitly breaks the shift symmetry (4) by
the κ term, there appears a non-vanishing exponential prefactor.
However, for |φR | < 1/

√
κ , the exponential prefactor is of O (1),

and therefore can be dropped.4 The Lagrangian for the inflaton φR

is summarized by

L ≈ 1

2
φ2

R(∂φR)2 − 1

2
m2φ2

R , (14)

for 1 
 φR 
 1/
√

κ . In terms of the canonically normalized field,
ϕ ≡ φ2

R/2, we have

L ≈ 1

2
(∂ϕ)2 − m2ϕ, (15)

for 1 
 ϕ 
 1/κ . Thus our model is equivalent to the linear term
inflation model.

After inflation ends, the inflaton field will oscillate about the
origin. Then the φI is no longer negligible, and the inflaton is ex-
pressed by a complex scalar field. As the amplitude decreases, the
κ-term becomes more important, and in the end, the kinetic term
arises mainly from the κ-term. The Lagrangian is

2 The breaking of the shift symmetry in the superpotential could produce radia-
tive corrections to the Kähler potential. In particular, κ = O (m2) is induced [4]. Here
we consider a more general case that κ and m are not related to each other.

3 A self-coupling ∼ |X |4 in the Kähler potential produces a Hubble-induced mass
term for X about the origin.

4 Actually, the inflaton does slow-roll if the exponential prefactor gives a main
contribution to the tilt of the potential.
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