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Realization of topological insulators (TIs) and superconductors (TSCs), such as the quantum spin Hall
effect and the Z2 topological insulator, in terms of D-branes in string theory is proposed. We establish
a one-to-one correspondence between the K-theory classification of TIs/TSCs and D-brane charges. The
string theory realization of TIs and TSCs comes naturally with gauge interactions, and the Wess–Zumino
term of the D-branes gives rise to a gauge field theory of topological nature. This sheds light on TIs and
TSCs beyond non-interacting systems, and the underlying topological field theory description thereof.
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1. Introduction

A gapped state of quantum condensed matter is called topologi-
cal phase when it supports stable gapless boundary modes, such as
an edge or a surface state. The integer quantum Hall effect (QHE),
which exists in d = 2 spatial dimensions and under a strong mag-
netic field, is the best known example of such a phase. The recent
discovery of the quantum spin Hall effect (QSHE) in d = 2 and the
Z2 topological insulator in d = 3 [1–8] shows topological phases
can exist even in d > 2 spatial dimensions, and can be protected
by some discrete symmetries such as time-reversal symmetry (TRS,
T), particle–hole symmetry (PHS, C), and chiral (or sublattice) sym-
metry (SLS, S).

For non-interacting fermions, an exhaustive classification of
topological insulators (TIs) and superconductors (TSCs) is proposed
in Refs. [9,10]: TIs/TSCs are classified in terms of spatial dimen-
sions d and the 10 = 2 + 8 symmetry classes (two “complex” and
eight “real” classes) (Table 1). The ten symmetry classes are in
one-to-one correspondence to the Riemannian symmetric spaces
(without exceptional series) and, as pointed out in [10], they are
equivalent to K-theory classifying spaces [11]. For example, the
IQHE, QSHE, and Z2 TI are a topologically non-trivial state belong-
ing to class A (d = 2), AII (d = 2), and AII (d = 3), respectively.

The complete classification of non-interacting TIs and TSCs
opens up a number of further questions, most interesting among
which are interaction effects: Do non-interacting topological phases

* Corresponding author.
E-mail addresses: sryu@berkeley.edu (S. Ryu), tadashi.takayanagi@ipmu.jp

(T. Takayanagi).

Table 1
Classification of topological insulators and superconductors [9,10]; d is the space di-
mension; the left-most column (A, AIII, . . . , CI) denotes the ten symmetry classes of
fermionic Hamiltonians, which are characterized by the presence/absence of time-
reversal (T), particle–hole (C), and chiral (or sublattice) (S) symmetries of different
types denoted by ±1 in the right most three columns. The entries “Z”, “Z2”, “2Z”,
and “0” represent the presence/absence of topological insulators and superconduc-
tors, and when they exist, types of these states (see Ref. [9] for detailed descrip-
tions).

class\d 0 1 2 3 4 5 6 7 T C S

A Z 0 Z 0 Z 0 Z 0 0 0 0
AIII 0 Z 0 Z 0 Z 0 Z 0 0 1

AI Z 0 0 0 2Z 0 Z2 Z2 + 0 0
BDI Z2 Z 0 0 0 2Z 0 Z2 + + 1
D Z2 Z2 Z 0 0 0 2Z 0 0 + 0
DIII 0 Z2 Z2 Z 0 0 0 2Z − + 1
AII 2Z 0 Z2 Z2 Z 0 0 0 − 0 0
CII 0 2Z 0 Z2 Z2 Z 0 0 − − 1
C 0 0 2Z 0 Z2 Z2 Z 0 0 − 0
CI 0 0 0 2Z 0 Z2 Z2 Z + − 1

continue to exist in the presence of interactions? Can interactions
give rise to novel topological phases other than non-interacting
TIs/TSCs? What is a topological field theory underlying TIs/TSCs,
which can potentially describe TIs/TSCs beyond non-interacting ex-
amples, etc.

On the other hand, the ten-fold classification of TIs/TSCs re-
minds us of D-branes, which are fundamental objects in string
theory, and are also classified by K-theory [12] (Table 2) via the
open string tachyon condensation [13]. It is then natural to specu-
late a possible connection between TIs/TSCs and of D-branes. In
this Letter, we propose a systematic construction of TIs/TSCs in
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Table 2
Dp-brane charges from K-theory, classified by K(S9−p), KO(S9−p) and KSp(S9−p) [12]. A Z2 charged Dp-brane with p even or p odd represents a non-BPS Dp-brane or a
bound state of a Dp and an anti-Dp brane, respectively [13].

D(−1) D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

type IIB Z 0 Z 0 Z 0 Z 0 Z 0 Z

O9− (type I) Z2 Z2 Z 0 0 0 Z 0 Z2 Z2 Z

O9+ 0 0 Z 0 Z2 Z2 Z 0 0 0 Z

Table 3
External G (left-most column) and internal G̃ gauge groups for each spatial dimen-
sion d and symmetry class; U, O, Sp, represents U(1), O(1) = Z2, and Sp(1) = SU(2),
respectively.

G class\d 0 1 2 3 4 5 6 7

U A U – U – U – U –
U AIII – U – U – U – U

O AI O – – – Sp – U O
O BDI O O – – – Sp – U
O D U O O – – – Sp –
O DIII – U O O – – – Sp
Sp AII Sp – U O O – – –
Sp CII – Sp – U O O – –
Sp C – – Sp – U O O –
Sp CI – – – Sp – U O O

terms of two D-branes (Dp- and Dq-branes), possibly with an ori-
entifold plane (O-plane). Besides the appealing mathematical sim-
ilarity between TIs/TSCs and D-branes, realizing TIs/TSCs in string
theory has a number of merits, since string theory and D-branes
are believed to be rich enough to reproduce many types of field
theories and interactions in a fully consistent and UV complete
way. Indeed, our string theory realizations of TIs/TSCs give rise
to massive fermion spectra, which are in one-to-one correspon-
dence with the ten-fold classification of TIs/TSCs, and come quite
naturally with gauge interactions. These systems, while interact-
ing, are all topologically stable, as protected by the K-theory charge
of D-branes. We thus make a first step toward understanding in-
teracting TIs/TSCs [14]. We are also separately preparing a regular
paper with more details and expanded results in [15].

In Dp–Dq systems, massive fermions arise as an open string
excitation between the two D-branes. The distance between the
branes corresponds to the mass of fermions. Open strings ending
on the same D-branes give rise to a gauge field, which we call
Aμ (Dp) and Ãμ (Dq) with gauge group G and G̃ , respectively,
and couple to the fermions. These two gauge fields play different
roles in our construction: The gauge field Aμ “measures” K-theory
charge of the Dq-brane, and in that sense it can be interpreted
as an “external” gauge field. In this picture, the Dq-brane charge
is identified with the topological (K-theory) charge of TIs/TSCs.
On the other hand, Ãμ is an internal degree of freedom on the
Dq-brane. For example, in the integer/fractional QHE, the external
gauge field is the electromagnetic U(1) gauge field, which measures
the Hall conductivity, while the internal gauge field is the Chern–
Simons (CS) gauge field describing the dynamics of the droplet
itself.

The massive fermions can be integrated out, yielding the de-
scription of the topological phase in terms of the gauge fields. The
resulting effective field theory comes with terms of topological na-
ture, such as the CS or the θ -terms. In our string theory setup,
they can be read off from the Wess–Zumino (WZ) action of the
D-branes, by taking one of the D-branes as a background for the
other. One can view these gauge-interacting TIs/TSCs from Dp–Dq
systems as an analogue of the projective (parton) construction of
the (fractional) QHE [16]. Our string theory realization of TIs/TSCs
sheds light on extending the projective construction of the QHE to
more generic TIs/TSCs; it tells us what type of gauge field is “natu-

Table 4
Dp–Dq systems for class A and AIII where p = 5 and q = 3,5,7 for A, and p = 4
and q = 4,6 for AIII. The D-branes extend in the μ-th direction denoted by “×”
in the ten-dimensional space-time (μ = 0, . . . ,9); d + 1 is the number of common
directions of Dp- and Dq-branes; The last column shows the Dq-brane charge, to-
gether with fermion spectra per Dq-brane, where “N f Mj” or “N f Di” represents
N f flavor of Majorana and Dirac spinor, respectively.

0 1 2 3 4 5 6 7 8 9 d A

D5 × × × × × ×
D3 × × × × 0 Z (2 Mj)
D5 × × × × × × 2 Z (2 Mj)
D7 × × × × × × × × 4 Z (1 Di)

0 1 2 3 4 5 6 7 8 9 d AIII

D4 × × × × ×
D4 × × × × × 1 Z (2 Mj)
D6 × × × × × × × 3 Z (2 Mj)

ral” to couple with fermions in topological phases, and guarantees
the topological stability of the system.

2. Complex case

Let us start with the most familiar example of the QHE (class A
in d = 2). We fix the value of p to be p = 5 by T-duality, and con-
sider a D5-brane in type IIB string theory which extends in the
x0,1,2,3,4,5 directions in ten-dimensional space–time. We take the
Dq-brane with q = 5 in the x0,1,2,6,7,8 directions (Table 4). By T-
duality, this setup is equivalent to the D3–D7 system studied in
[19–21]. Since the number of Neumann–Dirichlet (ND) directions
is six, open string excitations between the D5-branes give rise to
two Majorana fermions (Mj) [= one two-component Dirac fermion
(Di), ψ ] and no bosons. The distance between the D-branes in x9

direction (�x9) is proportional to the mass m of the fermions. The
low-energy effective theory is schematically summarized by the ef-
fective Lagrangian in the (2 + 1)-dimensional common direction of
the two D5-branes,

L = ψ̄
[
γ μ(i∂μ − Aμ − Ãμ) − m

]
ψ + · · · . (1)

Integrating the massive fermions yields the CS terms k
4π

∫
A ∧ dA

and k
4π

∫
Ã ∧ dÃ with k = ±1/2 (parity anomaly). The Hall con-

ductivity is read off from the CS term for Aμ as σxy = k/(2π).
Alternatively, the presence of the CS terms can be read off from
the WZ action of either one of D5-branes, e.g.,

SWZ
D5 ∝

∫

D5

F ∧ F ∧ C2 =
∫

D5

A ∧ F ∧ (dC)3 (2)

for the external gauge field Aμ , where C2 is the RR 2-form from
the Dq-brane. When we change the sign of m by passing the Dq-
brane through the Dp-brane, the value of k jumps from ±1/2 to
∓1/2. If we instead put N f Dq-branes, we have N f copies of mas-
sive Dirac fermions ψi which couple with U(N f ) gauge fields Aμ

and Ãμ (when all Dq are coincident).
This brane construction can be extended to other even space

dimensions d = 2n by considering D5–Dq systems with q = 5,7
(Table 4). This setup gives rise to the fermion spectrum consisting



Download	English	Version:

https://daneshyari.com/en/article/10725652

Download	Persian	Version:

https://daneshyari.com/article/10725652

Daneshyari.com

https://daneshyari.com/en/article/10725652
https://daneshyari.com/article/10725652
https://daneshyari.com/

