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The response of the QED vacuum in an asymptotically large electromagnetic field is studied. In this
regime the vacuum energy is strongly influenced by the vacuum polarization effect. The possible in-
teraction between the virtual electromagnetic radiation and a superstrong magnetic field suggests that a
background of virtual photons is a source of magnetization to the whole vacuum. The corresponding con-
tribution to the vacuum magnetization density is determined by considering the individual contribution
of each vacuum polarization eigenmode in the Euler–Heisenberg Lagrangian. Additional issues concerning
the transverse pressures are analyzed. We also study the case in which the vacuum is occupied by a su-
perstrong electric field. It is discussed that, in addition to the electron–positron pairs, the vacuum could
create photons with different propagation modes. The possible relation between the emission of photons
and the birefringent character of the vacuum is shown as well.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Whilst there is some evidence that very large magnetic fields
|B| � Bc, Bc = m2/e = 4.42×1013 G1 exist in stellar objects identi-
fied as neutron stars [1–3], its origin and evolution remains poorly
understood [4]. Some investigations in this area provide theoreti-
cal evidence that |B| might be generated due to gravitational and
rotational effects, whereas other theories estimate that is self-
consistent due to the Bose–Einstein condensation of charged and
neutral boson gases in a superstrong magnetic field [5–8]. In this
framework the nonlinear QED-vacuum possesses the properties of
a paramagnetic medium and constitutes a source of magnetization,
induced by the external magnetic field. Its properties are primar-
ily determined by the vacuum energy of virtual electron–positron
pairs. Because of this, a negative pressure transversal to the ex-
ternal field is generated [9] in similarity with the Casimir effect
between metallic plates [10]. Moreover, the vacuum occupied by
the external field turns out to be an “exotic” scenario in which
processes like photon splitting [11,12] and photon capture [13–15]
could take place. These two phenomena depend on the photon dis-
persion relation which differs from the light cone, due to vacuum
polarization effects [16–19]. As a result, the issue of light propaga-
tion in empty space, in the presence of an external magnetic field,
is similar to the dispersion of light in an anisotropic “medium”.

E-mail address: selymv@gmail.com.
1 Hereafter m and e are the electron mass and charge, respectively.

The phenomenological aspects associated with this problem
have been studied for a long time. In the meanwhile, other features
of nonlinear electrodynamics in a superstrong magnetic field have
been studied such as the dimensional reduction of the Coulomb
potential [20–23] and the possible existence of a photon anoma-
lous magnetic moment [24]. However, due to the vacuum polar-
ization effect, virtual photons can carry a magnetization as well.
As a consequence, they might be a source of magnetism to the
whole vacuum. Motivated by this idea, we address the question in
which way the virtual electromagnetic radiation contributes to the
vacuum magnetization and therefore to increase the external field
strength. The magnetic properties of the vacuum have been stud-
ied in [9,25–27] for weak (|B| � Bc) and moderate fields (|B| ∼
Bc) in one-loop approximation of the Euler–Heisenberg Lagrangian
[28] which involves the contribution from virtual electron–positron
pairs. The contribution of virtual photons, created and annihilated
spontaneously in the vacuum and interacting with B by means
of Πμν , is contained within the two-loop term of the Euler–
Heisenberg Lagrangian (see Fig. 1). The latter was computed many
years ago by Ritus [29,30] and has been recalculated by several
authors as well [31–34]. In all these works, however, it is re-
ally cumbersome to discern the individual contributions given by
each virtual photon propagation mode to the Euler–Heisenberg
Lagrangian which should allow to determine the magnetism and
pressure associated with each form of virtual mode. In this Letter
we analyze these contributions separately for very large magnetic
fields (|B| � Bc) since these allow to establish relations between
the birefringence of the vacuum [19,35,36] and the global proper-
ties of it.
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Fig. 1. Two-loop expansion of the Euler–Heisenberg Lagrangian. The double lines
represent the electron–positron Green’s functions, whereas the wavy line refers to
the photon. Here L(0) is the free Maxwell Lagrangian, L(1) represents the one loop
which gives the contribution of the virtual free electron–positron pairs created and
annihilated spontaneously in vacuum and interacting with the external field. The
radiative corrections (involved in L(2)) emerge from two loop due to exchange of
the virtual photons.

Besides the strongly magnetized vacuum, there is another in-
teresting external field configuration which deserves to be an-
alyzed: a supercritical electric field |E| � Ec with Ec = m2/e =
1.3 × 1016 V/cm. In this asymptotic region the Euler–Heisenberg
Lagrangian acquires an imaginary term which characterizes the in-
stability of the vacuum. This phenomenon is closely related to the
production of observable particles from the own vacuum. Certainly,
the creation of electron–positron pairs—the so-called Schwinger
mechanism—turns out to be the most remarkable effect predicted
through this procedure [28,37,38]. However, the imaginary part of
this effective Lagrangian is just a measure of the vacuum decay
and does neither give the actual rate of production of particles nor
the accessible decay channels [39]. Thereby not only the creation
of electron–positron pairs is a plausible effect but also the emis-
sion of observable photons [29,30]. The latter phenomenon was
analyzed by Gitman, Fradkin and Shvartsman [50–52]. Their re-
sults showed that the total probability of photon emission from
the vacuum, accompanied by the creation of an arbitrary number
of electron–positron pairs, is connected to the decay probability
of the vacuum and thus to the imaginary part arising from the
two-loop term of the Euler–Heisenberg Lagrangian. In this case the
corresponding decomposition in terms of the vacuum polarization
modes is particularly illuminating because it reveals that only two
of them contribute to the vacuum instability. It seems, therefore,
that the vacuum could create photons with different propagation
modes, an effect closely related to its own birefringence.

2. Preliminary remarks

In a magnetized vacuum the spatial symmetry is explic-
itly broken by the external field B. In this context, there is a
vectorial basis �

(i)
μ [20,40,41] which characterizes the vacuum

symmetry properties and fulfills both the orthogonality condi-
tion: �

(i)
σ �σ ( j) = δi j(�(i))2 and the completeness relation: δμ

ν −
kμkν

k2 = ∑3
i=1 �μ(i)�

(i)
ν /(�(i))2. Explicitly, the basis vectors read �

(1)
μ =

k2F 2
μλkλ − kμ(kF 2k), �

(2)
μ = F̃μλkλ , �

(3)
μ = Fμλkλ and �

(4)
μ = kμ .

These expressions involve the external field tensor Fμν and its
dual F̃μν = 1/2εμνρσ Fρσ . In this basis, the vacuum polarization
tensor is diagonal i.e.

Πμν =
4∑

i=0


i
�
(i)
μ �

(i)
ν

(�(i))2
(1)

whereas the dressed photon Green function can be expressed as

Dμν =
3∑

i=1

1

k2 − 
i

�
(i)
μ �

(i)
ν

(�(i))2
+ ζ

k2

kμkν

k2
. (2)

Here the 
i represent the Πμν -eigenvalues and ζ is the gauge
parameter. This diagonal decomposition of Πμν defines the en-

ergy spectrum of the electromagnetic field which differs from the
isotropic vacuum (B = 0).

Owing to the transversality property (kμΠμν = 0), the eigen-
value corresponding to the fourth eigenvector vanishes identically
(
(4) = 0). Furthermore, not all the remaining eigenmodes are
physical. In general, this depend on the direction of wave prop-
agation. To show this we consider �

(i)
μ (k) as the electromagnetic

four vector describing a photon. The corresponding electric and
magnetic fields of each mode are e(i) = i(k�

(i)
0 − ω(i)�(i)), b(i) =

−ik × �(i) . It follows that the mode i = 3 is a wave polarized in
the transverse plane to k whose electric e(3) ∼ k⊥ × n‖ and mag-
netic b(3) ∼ n‖k2⊥ − k⊥k‖ fields are orthogonal to each other. Here
the vectors k⊥ and k‖ are the components of k across and along
B with n‖ = B/|B|. For a pure longitudinal propagation to the ex-

ternal field k⊥ = 0, the mode �
(2)
μ is a longitudinal and nonphysical

electric wave e(2) ∼ n‖ . On the other hand, �
(1)
μ is transverse since

the associated electric field is e(1) ∼ k⊥ whereas the magnetic one
b(1) ∼ k⊥ ×k‖ . As a consequence, both �

(1)
μ and �

(3)
μ represent phys-

ical waves which may be combined to form a circularly polarized
transversal wave. In this case both modes propagate along B with
a dispersion law independents of the magnetic field strength [17,
19,41].

Now, if the photon propagation involves a nonvanishing trans-
versal momentum component k⊥ �= 0, we are allowed to perform
the analysis in a Lorentz frame that does not change the value
k⊥ , but gives k‖ = 0 and does not introduce an external elec-

tric field. In this Lorentz frame, the first eigenmode �
(1)
μ becomes

purely electric longitudinal and a nonphysical mode whereas �
(2)
μ

is transverse. Hence, for a photon whose three-momentum is di-
rected at any nonzero angle with the external magnetic field, the
two orthogonal polarization states �

(2)
μ and �

(3)
μ propagate. In this

framework the analytical structures of the corresponding eigenval-
ues 
2,3 are different. As a matter of fact, the vacuum behaves like
a birefringent medium with refraction indices [19,41]

η2 = |k|
ω2

=
(

1 + 
2

ω2
2

)1/2

and η3 = |k|
ω3

=
(

1 + 
3

ω2
3

)1/2

. (3)

Here ω2,3 are the corresponding solution of the dispersion equa-
tions k2 = 
2,3 arising from the poles of Dμν .

Considering these aspects, we analyze the Euler–Heisenberg La-
grangian

LEH = L(0)
R + L(1)

R + · · · (4)

where L(0)
R = − 1

2 B2 is the free renormalized Maxwell Lagrangian,

whereas L(1)
R denotes the one-loop regularized contribution of vir-

tual electron–positron pairs created and annihilated spontaneously
in vacuum and interacting with B [28]. In asymptotically large
magnetic fields it reads

L(1)
R (b) ≈ m4b2

24π2

{
ln

(
b

γπ

)
+ 6

π2
ζ ′(2)

}
. (5)

Here b = |B|/Bc, ln(γ ) = 0.577 . . . denotes the Euler constant
whereas 6π−2ζ ′(2) = −0.5699610 . . . and ζ(x) is the Riemann
zeta-function.

The contribution of a virtual photon interacting with external
field by means of the vacuum polarization tensor is expressed as
[29,31,34]

L(2) = i

2

∫
d4k

(2π)4
Πμν(k)D

μν
0 (k), (6)
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