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Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric,
we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric
metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but
repulsive (anti gravitational) forces on very large (cosmological) scales with ω = −1. Our approach is an
unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with
two examples, the solar system and the great attractor. From the geometrical point of view, these results
follow from the assumption that exists a confining force that make possible that test particles move on
a given 4D hypersurface.
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1. Introduction

In much the term antigravity has come to present all those
physical phenomena in which the usual gravitational potential is
modified to accommodate repulsive gravitational forces. This is a
fascinating subject which has many implications from the possi-
ble check of antigravity against experiments to the several the-
oretical issues that are involved, the 4D principle of equivalence
and energy conservation among others [1]. The idea of antigravity
has been subject of different approaches through the last decades.
Scherk [2] considered this phenomenon in the framework of su-
pergravity related to fermionic generators. In essence, antigravity
can be treated as one where the gravitational and other forces
between certain objects in a field theory can mutually cancel. Anti-
gravity has been studied from five-dimensional Kaluza–Klein (KK)
theory, where the extra dimension is compact [3]. The original
version of the KK theory assures, as a postulate, that the fifth
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dimension is compact. A few years ago, a non-compactified ap-
proach to KK gravity known as Induced Matter (IM) theory was
proposed by Wesson and collaborators [4]. In this theory all clas-
sical physical quantities, such as matter density and pressure, are
susceptible of a geometrical interpretation. Wesson’s proposal also
assumes that the fundamental 5D space in which our usual space-
time is embedded, should be a solution of the classical 5D vac-
uum Einstein equations: R AB = 0. The mathematical basis of it is
the Campbell–Magaard theorem [5], which ensures an embedding
of 4D general relativity with sources in a 5D theory whose field
equations are apparently empty. That is, the Einstein equations
Gαβ = (8πG/c4)Tαβ are embedded perfectly in the Ricci-flat equa-
tions R AB = 0. In simple terms, Wesson uses the fifth dimension to
model matter. More recently, has been suggested that antigravity
can be originated as the repulsion effect of matter and antimat-
ter [6]. The relationship between antigravity and antimatter has
been studied also in [7]. In the framework of brane world models,
has been suggested that antigravity effects could be important for
very large scales when gravitons are metastable [8]. The possibility
of obtaining an infrared modification to gravity on cosmological
scales from extra dimensions has been considered in [9]. Strong
antigravity has been obtained by compactification on a manifold
with flat directions from a higher-dimensional model [10]. Very
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recently was proposed an experiment to measure antigravity with
an antihydrogen beam [11].

On the other hand, when applied to cosmic structure on galac-
tic and larger scales, standard 4D general relativity and its Newto-
nian weak-field limit fail at describing the observed phenomenol-
ogy. To reconcile the theory with observations we need to assume
that ∼ 85% of the mass is seen only through its observational effect
and that ∼ 74% of the energy content of the universe is due to ei-
ther to an arbitrary cosmological constant or to a not well defined
dark energy fluid. The cosmological constant problem appears to
be so serious as the dark matter problem. The Einstein equations
admit the presence of an arbitrary constant Λ. The Friedmann so-
lutions with a positive Λ fit very satisfactorily the observational
evidence of an accelerating universe. The problem arises when one
wishes to attach a physical interpretation to Λ. Since observations
indicate Λ > 0, the dark energy fluid has negative pressure. Cur-
rent observations suggest ω = −1 at all probed epochs [12], so
models more sophisticated than a simple Λ could seem in princi-
ple unnecessary. However, in the context of quantum field theory,
the Λ problem translates into an extreme fine-tuning problem, be-
cause ρv(tP )/(

∑
�ρv) = (1 + 10−108) is extremely close to 1, but

not exactly 1. This problem would disappear if Λ were exactly
zero [15]. An alternative conclusion we can draw from this fail-
ure is that standard 4D General Relativity must be modified on
these cosmic scales, or, in other words that the equation of state
for matter is not ωm = 0, but could be ωm = −1. In this Letter we
explore this idea from a 5D vacuum state using some ideas of the
STM theory.

2. The field equations on 4D hypersurfaces

We start by considering a 5D spacetime with a Ricci-flat metric
gab determined by the line element [13]

dS2 =
(

ψ

ψ0

)2[
c2 f (r)dt2 − dr2

f (r)

− r2(dθ2 + sin2 θ dφ2)] − dψ2, (1)

where f (r) = 1 − (2Gζψ0/(rc2))[1 + c2r3/(2Gζψ3
0 )] is a dimen-

sionless function, {t, r, θ,φ} are the usual local spacetime spherical
coordinates employed in general relativity and ψ is the space-like
extra dimension that following the approach of the induced mat-
ter theory, will be considered as non-compact. In this line element
ψ and r have length units, θ and φ are angular coordinates, t is
a time-like coordinate, c denotes the speed of light, ψ0 is an arbi-
trary constant with length units and the constant parameter ζ has
units of (mass)(length)−1.

Now let us to assume that the 5D spacetime can be foliated by
the family of hypersurfaces {Σ0: ψ = ψ0}. On every generic hyper-
surface Σ0 the induced metric is given by the 4D line element

dS2
ind = c2 f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2 θ dφ2). (2)

Given the symmetry properties of the 5D spacetime, it seems nat-
ural to assume that the induced matter on Σ0 can be globally
described by a 4D energy momentum tensor of a perfect fluid
Tαβ = (ρc2 + P )UαUβ − P gαβ where ρ(t, r) and P (t, r) are re-
spectively the energy density and pressure of the induced matter.
From the relativistic point of view, observers that are on Σ0 move
with Uψ = 0 [see Section 3]. The Einstein field equations on the
hypersurface Σ0 for the metric in (2), read

r
df

dr
− 1 + f = −8πG

c2
r2ρ, (3)

r
df

dr
− 1 + f = 8πG

c4
r2 P . (4)

The resulting equation of state is

P = −ρc2 = − 3c4

8πG

1

ψ2
0

, (5)

which technically corresponds to a vacuum equation of state. On
the other hand, regarding that the metric in (2) has spherical sym-
metry, we can associate the energy density of induced matter ρ
to a mass density of a sphere of physical mass m ≡ ζψ0 and ra-
dius r0. If we do that, it follows that M and the radius r0 of such
a sphere are related by the expression ζ = r3

0/(2Gψ3
0 ). An imme-

diate consequence of this expression is that in principle given an
specific value of r0, depending of the value of ψ0 we could in-
duce a large massive object or a mini-massive object. This way we
can say that is possible in this case to treat the induced matter
as a massive compact object embedded in a 5D vacuum. Some in-
formation that we can obtain by simple inspection of the metric
(1) is that when Gζ = √

3/9 there is a single Schwarzschild ra-
dius. In this case the Schwarzschild radius is rSch = ψ0/

√
3 � r0.

When it is greater than the radius of the sphere of parameter ζ ,
the compact object has properties very close to those of a black
hole on distances 1 � r/ψ0 > rSch/ψ0, this condition holds when
Gζ � 1/(2

√
27 ) � 0.096225. For Gζ >

√
3/9 one obtains that

f (r) < 0 and there is not Schwarzschild radius. When Gζ �
√

3/9
there are two Schwarzschild radius, an interior rSi and an exterior
one rSe , such that by definition f (rSi ) = f (rSe ) = 0. This last case
has very interesting properties and we will focus on the study of
that properties in some scenarios at astrophysical and cosmologi-
cal scales. When we assume that the present universe we live in
can be modeled on the 4D hypersurface ΣH0 : ψ0 = cH−1

0 , H0 be-

ing H0 = 73 km
s Mpc−1 the present Hubble constant, we found that

the exterior Schwarszchild radius rSe becomes of the order of size
of the Hubble radius which is the size of the present observable
universe. On the other hand as the interior Schwarszchild radius
rSi depends strongly of the value of Gζ then when Gζ � 1, the in-
terior Schwarszchild radius rSi approximates to zero. What makes
interesting this case is that an observer located between these two
Schwarzschild radius could be able to see a compact object with a
horizon event determined by rSi immersed in our observable uni-
verse whose size is determined by the Hubble horizon given by rSe .
This particular case is our interest and in the preceding sections
we will study in detail more properties of it.

3. Particle trajectories

In order to study with more detail properties of the metric
(2), we shall describe the geodesic trajectories of non-massive and
massive test particles. All of these are described by the equation

dU a

dS
+ Γ a

bcU bU c = 0, (6)

where U a = dXa

dS and the five-dimensional velocity conditions are
fulfilled respectively

gabU aU b = 0, (7)

gabU aU b = c2, (8)

for non-massive and massive test particles that moves on the 5D
Ricci-flat metric (1).

3.1. Non-massive particles

For non-massive particles on the metric (1) the condition of 5D
null-geodesics: gabU aU b = 0, can be written as
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