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Three sets of exactly solvable one-dimensional quantum mechanical potentials are presented. These are
shape invariant potentials obtained by deforming the radial oscillator and the trigonometric/hyperbolic
Pöschl–Teller potentials in terms of their degree � polynomial eigenfunctions. We present the entire
eigenfunctions for these Hamiltonians (� = 1,2, . . .) in terms of new orthogonal polynomials. Two
recently reported shape invariant potentials of Quesne and Gómez-Ullate et al.’s are the first members of
these infinitely many potentials.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this Letter we present two infinite sets and one finite set
of exactly solvable one-dimensional quantum mechanical Hamil-
tonians. As the main part of the eigenfunctions, a new type of
orthogonal polynomials is obtained for each Hamiltonian. They are
exactly solvable by combining shape invariance [1] with the fac-
torisation method [2,3] or the so-called supersymmetric quantum
mechanics [4]. Then the entire energy spectrum and the corre-
sponding eigenfunctions can be obtained algebraically. However,
these new shape invariant Hamiltonians do not possess the ex-
act Heisenberg operator solutions [5], in contrast to most of the
known shape invariant Hamiltonians.

Shape invariance is a sufficient condition for exactly solvable
quantum mechanical systems. Based on one shape invariant po-
tential, an infinite number of exactly solvable potentials and their
eigenfunctions can be constructed by a modification of Crum’s
method [6,7]. But these newly derived systems fail to inherit the
shape invariance, nor do they possess Heisenberg operator solu-
tions. Although several shape invariant ‘discrete’ quantum mechan-
ical systems are added to recently [8], the catalogue of the shape

* Corresponding author.
E-mail address: odake@azusa.shinshu-u.ac.jp (S. Odake).

invariant potentials was rather short for a long time. In 2008,
Quesne [9] reported two new shape invariant potentials based
on the Sturm–Liouville problems for the X1-Laguerre and the X1-
Jacobi polynomials proposed by Gómez-Ullate et al. [10].

Here we present our preliminary results on the three sets of
shape invariant potentials and the corresponding new types of or-
thogonal polynomials, without proof. After brief introduction of
notation and the shape invariance method, they are obtained by
deforming the well-known shape invariant potentials, the radial os-
cillator and the Darboux–Pöschl–Teller [11,12] potentials, in terms
of the degree � polynomial eigenfunctions, i.e. the Laguerre and
the Jacobi polynomials. The eigenpolynomials of the new Hamil-
tonians are orthogonal polynomials starting from degree �, which
could be called X� polynomials. The Quesne–Gómez-Ullate et al.
examples [9,10] correspond to the � = 1 cases.

2. General setting: Shape invariance

The starting point is a generic one-dimensional quantum me-
chanical system having a square-integrable groundstate together
with a finite or infinite number of discrete energy levels: 0 = E0 <

E1 < E2 < · · · . The groundstate energy E0 is chosen to be zero, by
adjusting the constant part of the Hamiltonian. The positive semi-
definite Hamiltonian is expressed in a factorised form [2–4]:
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H = A† A = p2 + U (x), p = −i∂x, (1)

A def= ∂x − w ′(x), A† = −∂x − w ′(x), (2)

U (x)
def= w ′(x)2 + w ′′(x). (3)

For simplicity of presentation we have adopted the unit system in
which h̄ and the mass m of the particle are such that h̄ = 2m = 1.
Here we call a real and smooth function w(x) a prepotential and
it parametrises the groundstate wavefunction φ0(x), which has no
node and can be chosen real and positive, φ0(x) = ew(x) . It is trivial
to verify Aφ0(x) = 0 and Hφ0(x) = 0.

Shape invariance, a sufficient condition for exact solvability [1],
is realised by specific dependence of the potential, or the prepo-
tential on a set of parameters λ = (λ1, λ2, . . .), to be denoted by
w(x;λ), A(λ), H(λ), En(λ), etc. The shape invariance condition to
be discussed in this Letter is

A(λ)A(λ)† = A(λ + δ)† A(λ + δ) + E1(λ), (4)

w ′(x;λ)2 − w ′′(x;λ)

= w ′(x;λ + δ)2 + w ′′(x;λ + δ) + E1(λ), (5)

in which δ is a certain shift of the parameters. Then the entire
set of discrete eigenvalues and the corresponding eigenfunctions
of H = H(λ)

H(λ)φn(x;λ) = En(λ)φn(x;λ) (6)

is determined algebraically [1,4,8]:

En(λ) =
n−1∑
k=0

E1(λ + kδ), (7)

φn(x;λ) ∝ A(λ)† A(λ + δ)† · · · A
(
λ + (n − 1)δ

)†

× ew(x;λ+nδ). (8)

3. The radial oscillator

Here we present an infinite number of shape invariant poten-
tials indexed by a non-negative integer � = 0,1, 2, . . . . For � = 0, it
is the well-known radial oscillator, or the harmonic oscillator with
a centrifugal barrier potential, with λ = g > 0:

H0(g) = p2 + x2 + g(g − 1)

x2
− 1 − 2g, (9)

w0(x; g) = −1

2
x2 + g log x, 0 < x < ∞. (10)

Here we adopt the notation of our previous work [5, §III.A.1].
The shape invariance, the Heisenberg operator solution and the
creation–annihilation operators of the above Hamiltonian are dis-
cussed in some detail there. It is trivial to verify (5) with δ = 1,
E1(g) = 4 and we obtain the equidistant spectrum and the corre-
sponding eigenfunctions n = 0,1,2, . . . ,

En(g) = 4n, (11)

φn(x; g) = Pn
(
x2; g

)
ew0(x;g), Pn(x; g) = L

(g− 1
2 )

n (x). (12)

The polynomial eigenfunctions are the Laguerre polynomials in
x2, which are orthogonal with respect to the measure φ0(x)2 =
e2w0(x;g) = e−x2

x2g .
For each positive integer � � 1, let us introduce a prepotential

and a Hamiltonian:

ξ�(x; g)
def= L

(g+�− 3
2 )

� (−x), (13)

w�(x; g)
def= w0(x; g + �) + log

ξ�(x2; g + 1)

ξ�(x2; g)
, (14)

A�(λ)
def= ∂x − w ′

�(x;λ), A�(λ)† = −∂x − w ′
�(x;λ), (15)

H�(λ)
def= A�(λ)† A�(λ). (16)

Since the polynomial ξ�(x2; g) has no zero in the domain 0 <

x < ∞, the prepotential and the potential are smooth in the entire
domain. It is straightforward to verify the shape invariance condi-
tion (5) with δ = 1, E�,1(g) = 4. By using (8) as a Rodrigues type
formula, we obtain the complete set of eigenfunctions with the
equidistant spectrum:

H�(g)φ�,n(x; g) = E�,n(g)φ�,n(x; g), n = 0,1, . . . , (17)

E�,n(g) = En(g + �) = 4n, (18)

φ�,n(x; g) = P�,n
(
x2; g

)
ψ�(x), ψ�(x)

def= ew0(x;g+�)

ξ�(x2; g)
, (19)

P�,n(x; g)
def= ξ�(x; g + 1)Pn(x; g + �)

− ξ�−1(x; g + 2)Pn−1(x; g + �). (20)

Obviously we have P�,0(x; g) = ξ�(x; g + 1) and φ�,0(x; g) =
ew�(x;g) . The polynomial eigenfunction P�,n(x2; g) is a degree �+n
polynomial in x2 but it has only n zeros in the domain 0 < x < ∞.
These polynomials are orthogonal with respect to the measure
ψ�(x; g)2:

∞∫
0

dxψ�(x; g)2 P�,n
(
x2; g

)
P�,m

(
x2; g

)

= 1

2n!
(

n + g + 2� − 1

2

)
�

(
n + g + � − 1

2

)
δnm. (21)

They form a complete basis of the Hilbert space just like the La-
guerre polynomials in the � = 0 case. These new types of polyno-
mials do not satisfy the three term recurrence relation, a character-
istic feature of all the ordinary orthogonal polynomials. It should
be stressed that all four terms in (20) are the Laguerre polynomials
of the same index, g + � − 1/2. The action of the operators A�(g)

and A�(g)† on the eigenfunctions are:

A�(g)φ�,n(x; g) = −2φ�,n−1(x; g + 1),

A�(g)†φ�,n−1(x; g + 1) = −2nφ�,n(x; g). (22)

For � = 1 the Hamiltonian reads

H1(g) = p2 + x2 + g(g + 1)

x2
− 3 − 2g

+ 4

x2 + g + 1
2

− 4(2g + 1)

(x2 + g + 1
2 )2

,

which is equivalent to that of the shape invariant potential of
Quesne Eq. (8) of [9] with the replacement ω → 2 and l → g . The
formula (20) expressing the polynomial eigenfunctions in terms
of the Laguerre polynomials is the generalisation of Gómez-Ullate
et al.’s [10] relation Eq. (80) between the X1-Laguerre and the La-
guerre polynomials.

4. Darboux–Pöschl–Teller potential

Here we present another infinite number of shape invariant
potentials indexed by a non-negative integer � = 0,1,2, . . . . For
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