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We present results for the first positive parity excited state of the nucleon, namely, the Roper resonance

(N%+ = 1440 MeV) from a variational analysis technique. The analysis is performed for pion masses as
low as 224 MeV in quenched QCD with the FLIC fermion action. A wide variety of smeared-smeared
correlation functions are used to construct correlation matrices. This is done in order to find a suitable
basis of operators for the variational analysis such that eigenstates of the QCD Hamiltonian may be

PACS: isolated. A lower lying Roper state is observed that approaches the physical Roper state. To the best
1115.Ha of our knowledge, the first time this state has been identified at light quark masses using a variational
12.38.Gc approach.
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One of the long-standing puzzles in hadron spectroscopy has

been the low mass of the first positive parity, J© = %+, excitation
of the nucleon, known as the Roper resonance N*(1440 MeV). In
constituent or valence quark models with harmonic oscillator po-
tentials, the lowest-lying odd parity state naturally occurs below

the N = %Jr state (with principal quantum number N = 2) [1,2]
whereas, in nature the Roper resonance is almost 100 MeV be-
low the N = %7(1535 MeV) state. Similar difficulties in the level
orderings appear for the J¥ = %+A*(]600) and %+2*(1690) reso-
nances, which have led to the speculation that the Roper resonance
may be more appropriately viewed as a hybrid baryon state with
explicitly excited gluon field configurations [3,4], or as a breathing
mode of the ground state [5] or states which can be described in
terms of meson-baryon dynamics alone [6].

The first detailed analysis of the positive parity excitation of

the nucleon was performed in Ref. [7] using Wilson fermions and
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an operator product expansion spectral ansatz. Since then several
attempts have been made to address these issues in the lattice
framework [8-17], but in many cases no potential identification of
the Roper state has been made [8-12]. Recently however, in the
analysis of [13,14,18], a low-lying Roper state has been identified
using Bayesian techniques.

Here, we use a ‘variational method’ [19-21], which is based
on a correlation matrix analysis and has been used quite exten-
sively in Refs. [11,16,21-37]. Though the ground state mass of the
nucleon has been described successfully, an unambiguous determi-
nation of the Roper state with this method has not been achieved
in the past, though significant amounts of research have been car-
ried out in Ref. [23], by the CSSM Lattice Collaboration [11,16,25],
the BGR [26-29,33] Collaboration and in Refs. [36,37].

In this Letter, we present evidence of a low-lying Roper state
for the first time using a variational analysis. The observed state
displays chiral curvature and approaches the physical mass of the
Roper state. The standard nucleon interpolating field x; is con-
sidered in this analysis. Various sweeps of Gaussian smearing [38]
are used to construct a smeared-smeared correlation function ba-
sis from which we obtain the correlation matrices.
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The two point correlation function matrix for p = 0 can be
written as

Gij(t) = (ZTrsp{ri<9|xi<x>xj<0>|sz>}) (1)
=D AfAfemat, )

where, Dirac indices are implicit. Here, A; and )_Lj are the couplings
of interpolators x; and x; at the sink and source, respectively.
o enumerates the energy eigenstates with mass my,.

Since the only t dependence comes from the exponential term,
one can seek a linear superposition of interpolators, )Zju‘]?‘, such
that (more detail can be found in Refs. [11,16]),

Gij(t + A u§ =e MR G0y us, 3)

for sufficiently large t and t + At, see Refs. [22] and [16]. Multi-
plying the above equation by [G,-j(t)]‘l from the left leads to an
eigenvalue equation,
-1

[(G®) G+ an];uf =c*uf, (4)
where ¢® = e ™Al js the eigenvalue. Similar to Eq. (4), one can
also solve the left eigenvalue equation to recover the v* eigenvec-
tor,

ve[G(t + At)(c(t))’l]ij =, (5)

The vectors u;‘.‘ and v{ diagonalize the correlation matrix at time ¢

and t + At making the projected correlation matrix,
vEGij(tuf oc 5P (6)
The parity projected, eigenstate projected correlator,
+
vi G (Ouf =GY, (7)

is then analyzed using standard techniques to obtain masses of
different states.

Our analysis is exploratory, seeking to develop techniques to
access the Roper state in lattice gauge theory. Our lattice ensem-
ble consists of 200 quenched configurations with a lattice volume
of 163 x 32. Gauge field configurations are generated by using the
DBW?2 gauge action [39,40] and an O(a)-improved FLIC fermion
action [41] is used to generate quark propagators. This action has
excellent scaling properties and provides near continuum results
at finite lattice spacing [42]. The lattice spacing is a = 0.1273 fm,
as determined by the static quark potential, with the scale set
using the Sommer scale, ro = 0.49 fm [43]. In the irrelevant op-
erators of the fermion action we apply four sweeps of stout-link
smearing to the gauge links to reduce the coupling with the high
frequency modes of the theory [44] providing O(a) improvement
[42]. We use the same method as in Refs. [16,45] to determine
fixed boundary effects, and the effects are significant only after
time slice 25 in the present analysis. Various sweeps (1, 3, 7, 12,
16, 26, 35, 48 sweeps corresponding to rms radii, in lattice units,
of 0.6897, 1.0459, 1.5831, 2.0639, 2.3792, 3.0284, 3.5237, 4.1868) of
gauge invariant Gaussian smearing [38] are applied symmetrically
at the source (at t =4) and at the sink. This is to ensure a va-
riety of overlaps of the interpolators with the lower-lying states.
The analysis is performed on ten different quark masses corre-
sponding to pion masses m; = {0.797,0.729, 0.641, 0.541, 0.430,
0.380,0.327,0.295, 0.249, 0.224} GeV. Error analysis is performed
using a second-order single elimination jackknife method, where
the x2/dof is obtained via a covariance matrix analysis method.
Our fitting method is discussed extensively in Ref. [16].

The nucleon interpolator we consider is the local scalar-diquark
interpolator having a non-relativistic reduction [7,46],

x1(%) = €™ (uT(x) Cysd® (%)) u (x). (8)

We consider several 4 x 4 matrices. Each matrix is constructed
with different sets of correlation functions, each set element
corresponding to a different numbers of sweeps of gauge in-
variant Gaussian smearing at the source and sink of the xix1
correlators. This provides a large basis of operators with vari-
eties of overlap among energy states. We consider seven com-
binations {1 = (1,7,16,35), 2 =(3,7,16,35), 3 = (1,12, 26, 48),
4 = (3,12,26,35), 5= (3,12,26,48), 6 = (12,16,26,35), 7 =
(7,16, 35,48)} of 4 x 4 matrices. In Ref. [16] it was shown that
one cannot isolate a low-lying excited eigenstate using a single
fixed-size source smearing. The superposition of states manifested
itself as a smearing dependence of the effective mass. In this Letter
we exploit this sensitivity to isolate the energy eigenstates.

In Fig. 1, we show the mass from the projected correlation
functions and from the eigenvalues (as shown in Ref. [16]) for the
fourth combination (3, 12, 26, 35) of 4 x 4 matrices. We note that
similar results in mass from the projected correlation functions
and the eigenvalues are observed in this analysis as in Ref. [16].
Though the mass of the first excited state from projected corre-
lation functions show little change with variational parameters,
see Fig. 1, the second and third excited states start a little be-
low which indicates t and t + At are not sufficiently large. With
larger Euclidean times fewer states will contribute significantly to
the correlators. The robust aspect of fitting projected correlators
is manifest in Fig. 1, and reflects the stability of the eigenvec-
tors against changes in t and t + At. In contrast, the mass from
the eigenvalue analysis shows significant dependence on the vari-
ational parameters. The same method as described in Ref. [16] is
applied in this Letter to extract the mass from the projected corre-
lation functions.

In Fig. 2, masses extracted from all the combinations of 4 x 4
matrices (from 1st to 7th) are shown for the pion mass of
797 MeV. Some dependence of the excited states on smearing
count is also observed here as in Ref. [16] for a few of the inter-
polator basis smearing sets. However the ground and first excited
states are robust against changes in the interpolator basis, provid-
ing evidence that an energy eigenstate has been isolated. It should
be noted that the highest excited state (the third excited state) is
influenced more by the level of smearing than the lower excited
states. This is to be expected as this state must accommodate all
remaining spectral strength.

The 1st combination in Fig. 2 provides heavier excited states as
this basis begins with a low number of smearing sweeps (a sweep
count of 1) and also contains another low smearing set of 7
sweeps. The second and third excited states, and more importantly,
the first excited state sits a bit high in comparison with the other
bases. Hence, extracting masses with this basis is not as reliable
as other sets. The 2nd combination also contains elements with a
small smearing sweep count (3 and 7), hence this basis also pro-
vides heavier excited states and shows some systematic drift in the
second excited state. However, this basis has reduced contamina-
tion from the excited states when compared with the first basis.
The 3rd combination also starts at the low smearing count, so the
mass from this basis for the third excited state is a little high.

We can observe at this point that including basis elements with
a low smearing count will increase the masses of excited states (for
instance, consecutive low numbers of smearing sweeps 1, 7 and
3, 7, respectively). This is because the correlation functions with
these low sweep counts have a large overlap with several heav-
ier excited states in their sub-leading exponential. We also observe
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