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We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated
space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus
quadrupole–quadrupole interaction with monopole force are obtained so that the potential energy surface
of the Skyrme Hartree–Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in
the f pg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters
are in a good agreement with experimental data, in which the importance of the monopole interaction is
discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model
calculations.

© 2009 Elsevier B.V. All rights reserved.

Nuclear structure study is usually carried out with two major
groups of microscopic approaches: the self-consistent mean-field
(SCMF) method [1] and the shell model (SM) method [2]. Both
approaches have their advantages and disadvantages. The SCMF
method has a wide applicability across the nuclear chart for global
properties of the ground state, such as the binding energy, nuclear
size, and surface deformation. However, it does not give detailed
spectra of excited states and wave functions. Beyond mean-field
approximations, the angular momentum and particle number pro-
jection method has been applied; but it has been pointed out
that there are some conceptual problems and numerical difficul-
ties [3,4]. On the other hand, the SM method has the advantage
that excited energy levels and wave functions are described prop-
erly with many-body correlations included. However, in the SM
approach, the shell model Hamiltonian is required to accord with
each truncated model space, and single-particle energies and inter-
action matrix elements must be specific to the mass region. It is
not very clear how to determine these quantities microscopically.
There have been attempts along this line by Brown and Richter [5]
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and by Alhassid, Bertsch, and collaborators [6,7]. In the former at-
tempt, the SCMF was used to determine single-particle energies of
the SM Hamiltonian, while in the latter, a procedure for mapping
the SCMF onto the SM Hamiltonian, which includes monopole pair-
ing and quadrupole–quadrupole (QQ) interactions, was proposed.
Very recently, a novel way of determining parameters of the in-
teracting boson model (IBM) Hamiltonian has been proposed by
Nomura et al. [8] by using the potential energy surfaces (PESs) of
the SCMF model.

A realistic SM Hamiltonian can in principle be derived from the
free nucleon–nucleon force, and in fact, such microscopic interac-
tions have been proposed for the pf shell [9,10]. However, they fail
to reproduce excitation spectra, binding energies, and transitions
if many valence nucleons are involved. To overcome this defect,
considerable effort has been put forward on effective interactions
with empirical fit to experimental data [11–13]. On the other hand,
realistic effective interactions in nuclei are expressed in terms of
multipole pairing, multipole particle–hole, and monopole interac-
tions, the dominant parts of which are the monopole pairing and
quadrupole–quadrupole interactions with monopole terms (PQQM)
[14]. This has actually been confirmed for a wide range of N ≈ Z
nuclei in a series of calculations with an extended PQQM interac-
tions including additional terms (the quadrupole pairing and the
octupole–octupole term) [15,16]. This extended PQQM model has
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Fig. 1. (Color online.) PESs for 68Se and 28Si in the SHF calculation (a) and (c) and
the PQQM shell-model calculation (b) and (d). The PQQM parameters are deter-
mined so that the PQQM PES reproduces approximately that of the SHF. Contour
spacings are 0.2 MeV and 0.4 MeV for upper and lower graphs, respectively.

been successfully applied to different nuclei, as for instance those
in the f p-shell region [15] and the f pg-shell region [16]. The
model has only several parameters, far less than the number of re-
alistic interaction matrix elements usually contained in shell model
calculations. However, its capability is very much comparable to
that of realistic effective interactions. Thus, the extended PQQM
model is not a mere schematic model, but is a kind of realistic
shell model calculation applicable to a large body of nuclei.

In general, defining an effective SM Hamiltonian, especially for
heavier nuclei where truncation in the shell model space is nec-
essary, is a very difficult task. It is desired that a SM Hamiltonian
is determined at a more fundamental level, which can not only
locally fit excitation spectra, but also be consistent with a global
description of the ground state properties. It has been claimed
[17] that within the SCMF method, the Skyrme force contains cor-
rect QQ and monopole components, and is able to describe both
low- and high-energy quadrupole excitations. The Skyrme force
including pairing interaction contains QQ and pairing, as well as
monopole components. It is the purpose of the present Letter that
based on the Skyrme SCMF, we propose the Hamiltonian for the
truncated shell model by performing a global PES mapping. We
note that for a shell model using realistic effective interactions, it
may be very difficult to obtain a unique result when such a global
PES mapping is performed because there are too many interaction
matrix elements in the model. However, our PQQM model Hamil-
tonian has only few parameters, namely, the g0, χ , and monopole
strengths (see Eq. (1) below). Therefore, the PQQM type of interac-
tion is particularly suitable for a global PES mapping.

Fig. 1a and c show PESs on the β–γ plane calculated by the
constrained Skyrme Hartree–Fock+BCS method (hereafter denoted
as SHF), which is imposed by the triaxial degrees of freedom
using the mass quadrupole moments. The plotted energy ranges
are up to 5 MeV for 68Se and 8 MeV for 28Si above the respec-
tive energy minimum. For 68Se, we employ the SIII parameter set
[18] of the Skyrme interaction for the mean-field channel, which

has been successful in describing systematically the ground-state
quadrupole deformations in proton- and neutron-rich Kr, Sr, Zr, and
Mo isotopes [19]. For 28Si, we use the SLy4 [20] interaction. We
use the ev8 code [21] with pairing interaction of the δ-function
type with the strength V 0 = 1000 MeV fm3. For 68Se, the long-
standing prediction of a stable oblate deformation was confirmed
by the observation of the oblate ground state band in 68Se [22].
Determination of shape was inferred indirectly from the study of
rotational bands, while direct quadrupole measurement is difficult
for these short-lived states. It has been suggested by various theo-
retical approaches [23–27] that the oblate configuration coexists
with a prolate rotational band, which constitutes a clear exam-
ple of oblate–prolate shape coexistence. It can be seen from Fig. 1
that the PES of the current SCMF calculation with SIII interaction
(Fig. 1a) indeed yields two separate minima at the oblate and pro-
late side with deformation β ≈ 0.24. For 28Si, the PES (Fig. 1c) has
a minimum at the oblate side with deformation β ≈ 0.33, corre-
sponding to the experimental spectroscopic quadrupole moment
Q s = 16 e fm2.

To connect these SHF results with SM results, we start with the
PQQM model Hamiltonian [27,28]

H =
∑

α

εac†
αcα − g0

2
P †

0 · P0 − χ

2
Q †

2 · Q 2 + V m, (1)

where εa is single-particle energy. The second term in Eq. (1) is
the monopole pairing interactions with P0 being the T = 1, J = 0
pair operator, and the third term is the QQ interaction with Q 2
the T = 0 quadrupole operator. The last term V m is the monopole
force. Due to isospin-invariance, each of these terms in Eq. (1) con-
tains the p–n components which play important roles in N = Z
nuclei. The quadrupole-pairing, the octupole–octupole, and the av-
erage monopole terms employed in the previous papers [27,28]
are neglected for simplicity because they do not affect the current
conclusion.

The SM calculation [27,28] is performed by the SM code [29] for
the f pg- and sd-SM spaces, for which we assume a closed 56Ni-
and 16O-core, respectively. Since the Hamiltonian (1) is isospin-
invariant, single-particle energies are taken as the same for protons
and neutrons. For the f pg-shell space, the single-particle ener-
gies for the 2p3/2, 1 f5/2, 2p1/2, and 1g9/2 states can be read
from the low-lying states of 57Ni. We use the experimental val-
ues εp3/2 = 0.0, ε f 5/2 = 0.77, εp1/2 = 1.11, and εg9/2 = 2.50 (all
in MeV), as in the previous paper [27]. For the sd-shell space,
the single-particle energies for the 1d5/2, 2s1/2, and 1d3/2 states
are employed from USD Hamiltonian [11]. Nuclear shapes includ-
ing triaxiality are calculated by the constrained Hartree–Fock (CHF)
method [30,31] and SM PES is defined as the expectation value 〈H〉
with respect to the CHF state in the β–γ plane.

We now sketch the procedure to determine the pairing, the
quadrupole–quadrupole, and the monopole force strengths by tak-
ing 68Se and 28Si as examples. Fig. 2 shows the PESs as functions of
axial deformation β and of triaxiality γ with fixed β at the defor-
mation minimum. The PES results in solid curves are obtained by
requiring that the interaction strengths in the PQQM Hamiltonian
are set so as to reproduce the PESs of the SHF calculation. As one
can see, the PESs of the PQQM calculation reproduce well those of
the SHF with SIII for 68Se and SLy4 for 28Si. For large deformations
with |β| > 0.24 in 68Se and |β| > 0.4 in 28Si, the PESs have the
pronounced sharp wall as shown in Fig. 2. This seems to be a gen-
eral trend and is probably due to the small truncated model space.
We therefore neglect this sharp wall in the PES mapping. In this
way, the PQQM parameters are uniquely determined.

It is known that the SHF PES pattern depends on the Skyrme
parameterization. To show that the extracted PQQM Hamiltonian
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