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By means of QCD simulations on the lattice, we compute the coupling of the heavy–light mesons to a
soft pion in the static heavy quark limit. The gauge field configurations used in this calculations include
the effect of N f = 2 dynamical Wilson quarks, while for the static quark propagator we use its improved
form (so-called HYP). On the basis of our results we obtain that the coupling ĝ = 0.44 ± 0.03+0.07

−0.00, where
the second error is flat (not Gaussian).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The static quark limit of QCD offers a simplified framework to
solving the non-perturbative dynamics of light degrees of freedom
in the heavy–light systems. That dynamics is constrained by heavy
quark symmetry (HQS): it is blind to the heavy quark flavor and its
spin. As a result the total angular momentum of the light degrees
of freedom becomes a good quantum number ( j P

� ), and therefore
the physical heavy–light mesons come in mass-degenerate dou-
blets. In phenomenological applications the most interesting in-
formation involves the lowest lying doublet, the one with j P

� =
(1/2)− , consisting of a pseudoscalar and a vector meson, such as
(Bq, B∗

q ) or (Dq, D∗
q ) states, where q ∈ {u,d, s}. When studying any

phenomenologically interesting quantity from the QCD simulations
on the lattice that includes heavy–light mesons (decay constants,
various form factors, bag parameters and so on), one of the ma-
jor sources of systematic uncertainty is related to the necessity to
make chiral extrapolations. The reason is that the physical light
quarks, which are expected to most significantly modify the struc-
ture of the QCD vacuum, are much lighter than the ones that are
directly simulated on the lattice, mq � mu,d . Here by “q” we label
the light quark masses that are attainable from the lattice. Since
the QCD dynamics with very light quarks is bound to be strongly
affected by the effects of spontaneous chiral symmetry breaking,
a more suitable (theoretically more controllable) way to guide such
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extrapolations is by using the expressions derived in heavy meson
chiral perturbation theory (HMChPT), which is an effective theory
built on the combination of HQS and the spontaneous chiral sym-
metry breaking [SU(N f )L ⊗ SU(N f )R → SU(N f )V ]. Its Lagrangian is
given by [1]

Lheavy = − tra Tr[H̄aiv · Dba Hb] + ĝ tra Tr
[

H̄a HbγμAμ
baγ5

]
,

Dμ
ba Hb = ∂μHa − Hb

1

2

[
ξ †∂μξ + ξ∂μξ †]

ba,

Aab
μ = i

2

[
ξ †∂μξ − ξ∂μξ †]

ab, (1)

where

Ha(v) = 1 + /v

2

[
P∗a

μ (v)γμ − P a(v)γ5
]
, (2)

is the heavy meson doublet field containing the pseudoscalar,
P a(v), and the vector meson field, P∗a(v). In the above formulas,
the indices a,b run over the light quark flavors, ξ = exp(iΦ/ f ),
with Φ being the matrix of (N2

f − 1) pseudo-Goldstone bosons,
and “ f ” is the pion decay constant in the chiral limit. We see that
the term connecting the Goldstone boson (Aμ) with the heavy-
meson doublet [H(v)] is proportional to the coupling ĝ , which will
therefore enter into every expression related to physics of heavy–
light mesons with j P

� = (1/2)− when the chiral loop corrections
are included.1 Being the parameter of effective theory, its value
cannot be predicted but should be fixed in some other way. It can

1 A special attention should be given to the problem related to the presence of
the nearby excited states as discussed in Ref. [2]. Any precision lattice calculation
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be related to the measured decay width Γ (D∗ → Dπ) [3], with
the resulting value ĝcharm = 0.61(7). That value turned out to be
much larger than predicted by all of the QCD sum rule approaches
[4], but consistent with some model predictions such as the one
in Ref. [5], in which a more detailed list of predictions with their
references can be found. The large value for gD∗ Dπ -coupling was
confirmed by the quenched lattice QCD study in Ref. [6], and re-
cently also in the unquenched case [7]. Since the charm quark is
not very heavy, the use of gD∗ Dπ to fix the value of ĝ-coupling,
via

ĝ = gD∗ Dπ

2
√

mDmD∗
fπ , (3)

and its use in chiral extrapolations of the quantities relevant to
B-physics phenomenology may be dangerous mainly because of
the potentially large O(1/mn

c )-corrections. Unfortunately the decay
B∗ → Bπ is kinematically forbidden and therefore, to determine
the size of ĝ , we have to resort to a non-perturbative approach to
QCD. Unlike for the computation of the heavy-to-light form factors,
QCD sum rules proved to be inadequate when computing gD∗ Dπ ,
most likely because of the use of double dispersion relations when
the radial excitations should be explicitly included in the analy-
sis, as claimed in Ref. [8]. In this Letter, instead, we compute the
ĝ-coupling on the lattice by using the unquenched gauge field con-
figurations, with N f = 2 dynamical light quarks, and in the static
heavy quark limit. The attempts to compute this coupling in this
limit were made in Ref. [9], and very recently in Ref. [10]. On the
basis of the currently available information, the coupling ĝ in the
static limit is indeed smaller than the one obtained in the charmed
heavy quark case.

In the remainder of this Letter we will briefly describe the stan-
dard strategy to compute this coupling, list the correlation func-
tions that are being computed to extract the bare coupling ĝq , as
well as the axial vector renormalization constants. We then give
details concerning the gauge field configurations used in this work,
and present our results.

2. Definitions and correlation functions to be computed

In the limit in which the heavy quark is infinitely heavy and the
light quarks massless, the axial coupling of the charged pion to the
lowest lying doublet of heavy–light mesons, ĝ , is defined via [9]

〈B| 	A|B∗(ε)〉 = ĝ	ελ, (4)

where the non-relativistic normalisation of states |B(∗)〉 is as-
sumed, 〈Ba(v)|Bb(v ′)〉 = δabδ(v − v ′). For the heavy–light hadrons
at rest (	v = 	v ′ = 	0), the soft pion that couples to the axial current,
Aμ = ūγμγ5d, is at rest too, |	q| = 0. ελ

μ is the polarisation of the
vector static-light meson. In the typical situation on the lattice we
are away from the chiral limit ( ĝ → ĝq), and the coupling ĝq be-
comes the axial form factor whose value should be extrapolated to
the chiral limit, in which the soft pion theorem relating the matrix
element of the axial current to the pionic coupling applies [9].

The standard strategy to compute the above matrix element on
the lattice consists in evaluating the following correlation func-
tions:

C2(t) =
〈∑

	x
P (x)P †(0)

〉
U

HQS= 1

3

〈∑
i,	x

V i(x)V †
i (0)

〉
U

cannot be fully trusted if the chiral extrapolations are made without discussing the
problem of discerning the mixing with the j P

� = (1/2)+ states in the chiral loop
diagrams.

=
〈∑

	x
Tr

[
1 + γ0

2
W 0

x γ5 Su,d(0, x)γ5

]〉
U
,

C3(t y, tx) =
〈∑

i,	x,	y
V i(y)Ai(x)P †(0)

〉
U

=
〈∑

	x,	y
Tr

[
1 + γ0

2
W y

0 γi Su(y, x)γiγ5 Sd(x,0)γ5

]〉
U
, (5)

where 〈· · ·〉U denotes the average over independent gauge field
configurations, the interpolating fields are P = h̄γ5q, V i = h̄γiq,
with h(x) and q(x) the static heavy and the light quark field, re-
spectively. In what follows, we drop the dependence on t y . In
practice its value is fixed to one or several values as it will be
specified in the text. In Eq. (5) we also expressed the correlation
functions in terms of quark propagators: the light ones, Sq(x, y),
and the static heavy one, which becomes a Wilson line,

W y
x = δ(	x − 	y)

tx−1∏
τ=t y

U impr.
0 (τ , 	x). (6)

The latter is merely obtained from the discretized static heavy
quark action [11]

LHQET =
∑

x

h†(x)
[
h(x) − U impr.

0 (x − 0̂)†h(x − 0̂)
]
, (7)

where for U impr.
0 , the time component of the link variable, we

use its improved form, obtained after applying the hyper-cubic
blocking procedure on the original link variable, with the pa-
rameters optimized in a way described in Ref. [12], namely with
	α = (0.75,0.6,0.3). That step is essential as it ensures the expo-
nential improvement of the signal to noise ratio in the correlation
functions with respect to what is obtained by using the simple
product of link variables [13].

The spectral decomposition of the three point function, given in
Eq. (5), reads

C3(tx) =
∑
m,n

[
Zne−E q

n t y 〈Bn|Ai |B∗
m〉e−(E q

m−E q
n )tx Zmε

(m)
i

]
,

where the sum includes not only the ground states (m = n = 0)
but also their radial excitations (m,n > 0), which are heavier
and thus exponentially suppressed. Note a shorthand notation,
Zn = |〈0|h†γ5q|Bq〉|, and the fact that we do not distinguish Zn

from couplings to the vector interpolating operator because of the
HQS. If the non-diagonal terms in the above sum were important
(n �= m) the correlation function C3(tx) would exhibit some expo-
nential dependence in tx . In practice, it appears that the correlation
functions C3(tx), as defined in Eq. (5) are very flat (tx-independent)
for all the data sets that we use in this work and the details
of which will be given in the next section (c.f. Fig. 1). This ob-
servation in fact agrees with what one can deduce from various
quark models, and in particular from the one in Ref. [5]. We will
therefore discard the non-diagonal terms in the spectral decompo-
sition of C3(tx). We are still left with the problem of contamina-
tion of the desired signal (n = 0) by the axial transitions among
radial excitations, n = m > 0. To solve that problem we should em-
ploy some smearing procedure and suppress the couplings of the
source operators to the radial excitations. To that purpose we use
the smearing technique proposed in Ref. [14], which essentially
means that – in Eq. (5) – the interpolating fields are replaced
by h̄(x)γ5q(x) → h̄(x)γ5qS(x), and similarly for the source of the
heavy–light vector mesons, where
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