

PHYSICS LETTERS B

Physics Letters B 659 (2008) 864-869

www.elsevier.com/locate/physletb

Evidence for core excitation in single-particle states of ¹⁹Na

M.G. Pellegriti ^{a,1}, N.L. Achouri ^b, C. Angulo ^{a,2}, J.-C. Angélique ^{b,3}, E. Berthoumieux ^c, E. Casarejos ^{a,4}, M. Couder ^{a,5}, T. Davinson ^d, C. Ghag ^d, A.St. Murphy ^d, N.A. Orr ^b, I. Ray ^e, I.G. Stefan ^e, P. Descouvemont ^{f,*,6}

^a Centre de Recherches du Cyclotron and Institut de Physique Nucléaire, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium b LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, 14050 Caen cedex, France c DAPNIA/SPhN, Bat. 703, CEA, Gif-sur-Yvette cedex, France

^d School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK
^e GANIL, Boulevard Becquerel, F-14000 Caen, France

f Physique Nucléaire Théorique et Physique Mathématique CP229, Université Libre de Bruxelles, B-1050 Brussels, Belgium

Received 22 November 2007; received in revised form 12 December 2007; accepted 14 December 2007

Available online 3 January 2008

Editor: V. Metag

Abstract

We present an experimental study of 19 Na states in the excitation energy range between 2 and 3 MeV. The presence of 19 Na single-particle levels at these energies was first predicted by a microscopic cluster model and then experimentally confirmed by measuring the elastic and inelastic scattering of a 66 MeV 18 Ne radioactive beam on a $(CH_2)_n$ target. The $H(^{18}$ Ne, $p)^{18}$ Ne(g.s.) and $H(^{18}$ Ne, $p')^{18}$ Ne*(2+, 1.887 MeV) cross sections have been obtained in the laboratory angular range $\theta_{\text{lab}} = 6.1^{\circ}-18.4^{\circ}$ and analyzed by using the R-matrix method. Two new states in 19 Na have been observed at centre-of-mass energies $E_{\text{c.m.}} = 2.78 \pm 0.01$ MeV and 3.09 ± 0.05 MeV. Both resonances exhibit large widths in the 18 Ne(2+) + p channel, and low branching ratios into the elastic channel. The reduced proton widths confirm the single-particle nature of these states, with a 18 Ne(2+) + p structure. © 2007 Elsevier B.V. All rights reserved.

PACS: 25.60.-t; 25.60.Bx; 27.20.+n

Keywords: Elastic scattering; Inelastic scattering; Single-particle states

1. Introduction

The existence of single-particle states [1] is well established in many stable nuclei. A single-particle state can be considered as an inert core (usually in its ground state) surrounded by a valence nucleon. The main characteristic of such a state is a large reduced width, close to the Wigner limit. The concept of single-particle states can be extended in two directions: to nuclei near or beyond the drip lines, and to specific states where the core nucleus is in an excited state.

The aim of the present Letter is to investigate the ¹⁹Na spectrum above 2 MeV by inverse elastic and inelastic scattering of a ¹⁸Ne radioactive beam on a proton target. In a previous experiment [2], we considered the low-energy region and found evidence for a new $1/2^+$ level ($\ell=0$) at $E_{\rm c.m.}=1.06$ MeV. This state is characterized by a strong Coulomb shift, consistent with a large reduced width. Its interpretation as a ¹⁸Ne(0⁺) + p single-particle state was confirmed in subsequent experiments [3,4].

^{*} Corresponding author.

E-mail address: pdesc@ulb.ac.be (P. Descouvemont).

Present address: Dipartimento di Fisica e Astronomia, Università di Catania and Laboratori Nazionali del Sud – INFN, Catania, Italy.

² Present address: Tractebel Engineering (SUEZ), Avenue Ariane 7, 1200 Brussels, Belgium.

³ Present address: LPSC, Grenoble, France.

⁴ Present address: Universidade de Santiago de Compostela, Spain.

⁵ Present address: University of Notre Dame, South Bend, USA.

⁶ Directeur de Recherches FNRS.

Fig. 1. GCM and experimental ¹⁹O and ¹⁹Na spectra. The ¹⁹Na states in bold were observed in the present experiment. The particle thresholds are shown as dashed lines.

In this work, we have investigated simultaneously the 18 Ne + p elastic and inelastic scattering, to search for mirror states of 19 O. The mirror 19 O nucleus is stable against neutron decay ($\tau_{1/2} = 27s$) and has been studied in various experiments and theoretical models (see for example Refs. [5,6].) Calculations based on a microscopic cluster model suggest that states with large 18 O(2⁺) + n or 18 Ne(2⁺) + p components are expected above 2 MeV excitation energy. Such states cannot be easily observed in elastic scattering, but are expected to show up in the H(18 Ne, p') 18 Ne* inelastic cross section, where 18 Ne is in its first excited state (1.887 MeV, 2⁺). The existence of core excitations in single-particle states is predicted by theory in several nuclei, and it is in that context that the present work was undertaken.

2. Microscopic calculation

Before running the experiment we have performed a preliminary calculation using a microscopic cluster model [7], based on the generator coordinate method (GCM) [8]. In this model, all nucleons are taken into account, and the Hamiltonian is given by

$$H = \sum_{i=1}^{19} T_i + \sum_{i>j=1}^{19} V_{ij},\tag{1}$$

where T_i is the kinetic energy of nucleon i, and V_{ij} is a nucleon–nucleon interaction, taken here as the Volkov V2 force [9].

The GCM wave functions of 19 Na are factorized into 18 Ne and p internal wave functions as

$$\psi = \sum_{k} \mathcal{A}\phi_{18}^{k} \phi_{p} g_{k}(\rho), \tag{2}$$

Table 1 GCM energies and widths of 19 Na resonances. Total widths are given in keV, and dimensionless reduced widths (at a=5 fm) in %. Angular momenta in the elastic and inelastic channels are denoted by ℓ_0 and ℓ_2 , respectively. The notation x^n stands for $x \times 10^n$

J^{π}	E _{c.m.} (MeV)	ℓ_0	ℓ_2	Γ_0	Γ_2	θ_0^2	θ_2^2
1/2+	1.06	0	2	130	-	30	2.6
$7/2^{+}$	2.18	4	2	1.5^{-5}	8.9^{-5}	1.0^{-3}	5.4
$5/2^{+}$	2.52	2	0	1.5	19	0.3	50
3/2+	2.81	2	0	2.0	79	0.3	31

where k labels the channels, \mathcal{A} is the antisymmetrization operator, ϕ_{18}^k are shell-model wave functions of $^{18}\text{O}/^{18}\text{Ne}$ and g_k are radial functions depending on the relative coordinate ρ . All sd-shell states are included in the $^{18}\text{O}/^{18}\text{Ne}$ wave functions, in particular the 0^+ ground state, and the 2^+ first excited state (see Ref. [10] for details). The angular momentum projection is performed using standard methods [7]. This model has been used to investigate many nuclei and reactions (see for example Ref. [11]), and is well adapted to exotic nuclei with low level densities.

In Fig. 1, we present the ¹⁹O and ¹⁹Na spectra obtained from the GCM calculations. In both systems, the admixture parameter M of the Volkov force has been determined from the experimental $1/2^+$ energy. All other energies were obtained without any fitting. The low-lying part of both spectra is remarkably well reproduced by the GCM. The proton widths in the ¹⁸Ne(0⁺) + p and ¹⁸Ne(2⁺) + p channels (referred to by the indices "0" and "2", respectively) are given in Table 1, as are the angular momenta ℓ_0 and ℓ_2 . Since the 2⁺ excitation energy is slightly underestimated by the GCM (1.54 MeV whereas experiment gives 1.88 MeV), we have corrected the Γ_2 values to account for the experimental threshold.

Download English Version:

https://daneshyari.com/en/article/10725950

Download Persian Version:

https://daneshyari.com/article/10725950

<u>Daneshyari.com</u>