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a b s t r a c t

We discuss a holographic soft-wall model developed for the description of mesons
and baryons with adjustable quantum numbers n, J, L, S. This approach is based on an
action which describes hadrons with broken conformal invariance and which incorporates
confinement through the presence of a background dilaton field. Results obtained for
heavy-light mesonmasses and decay constants are consistent with predictions of HQET. In
the baryon sector, applications to the baryonmasses, nucleon electromagnetic form factors
and generalized parton distributions are discussed.
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1. Introduction

Based on the correspondence of string theory in anti-de Sitter (AdS) space and conformal field theory (CFT) in physical
space–time [1], a class of AdS/QCD approaches was recently successfully developed for describing the phenomenology
of hadronic properties. In order to break conformal invariance and incorporate confinement in the infrared (IR) region
two alternative AdS/QCD backgrounds have been suggested in the literature: the ‘‘hard-wall’’ approach [2], based on the
introduction of an IR brane cutoff in the fifth dimension, and the ‘‘soft-wall’’ approach [3], based on using a soft cutoff. This
last procedure can be introduced in the following ways: (i) as a background field (dilaton) in the overall exponential of
the action, (ii) in the warping factor of the AdS metric and (iii) in the effective potential of the action. These methods are
in principle equivalent to each other due to a redefinition of the bulk field involving the dilaton field or by a redefinition
of the effective potential. In the literature, there exist detailed discussions of the sign of the dilaton profile in the dilaton
exponential exp(±ϕ) [3–7] for the soft-wall model (for a discussion of the sign of the dilaton in the warping factor of the
AdS metric, see Ref. [8]). The negative sign was suggested in Ref. [3] and recently discussed in Ref. [7]. It leads to a Regge-
like behavior of the meson spectrum, including a straightforward extension to fields of higher spin J . Also, in Ref. [7] it was
shown that this choice of the dilaton sign guarantees the absence of a spurious massless scalar mode in the vector channel
of the soft-wall model. We stress that alternative versions of this model with a positive sign are also possible. One should
just redefine the bulk field S(x, z) as S(x, z) = eϕ(z) S̃(x, z), where the transformed field corresponds to the dilaton with
an opposite profile. It is clear that the underlying action changes, and extra potential terms are generated depending on
the dilaton field (see detailed discussion in [9]). Here we present a summary of recent results: meson mass spectrum and
decay constants of light and heavy mesons, baryon masses, nucleon electromagnetic form factors and generalized parton
distributions [9–11]. Our starting points are the effective (d + 1) dimensional actions formulated in AdS space in terms of
boson or fermion bulk fields, which serve as holographic images of mesons and baryons.
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2. Approach

Our starting points are the effective (d + 1) dimensional actions formulated in AdS space in terms of boson or fermion
bulk fields, which serve as holographic images ofmesons and baryons. For illustration, we consider the simplest actions—for
scalar fields (J = 0) [10–12]
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and J = 1/2 fermions [13,11]:
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where S and Ψ are the scalar and fermion bulk fields, DM is the covariant derivative acting on the fermion field, Γ a
=

(γ µ, −iγ 5) are the Dirac matrices, ϕ(z) = κ2z2 is the dilaton field, R is the AdS radius, 1V0(z) is the dilaton potential.
µS and µΨ are the masses of scalar and fermion bulk fields defined as µ2

SR
2

= ∆M(∆M − d) and µΨ R = ∆B − d/2.
Here ∆M = τM = 2 + L and ∆B = τB + 1/2 = 7/2 + L are the dimensions of scalar and fermion fields, which due to
the QCD/gravity correspondence are related to the scaling dimensions (twists τM , τB) of the corresponding interpolating
operators, where L = max |Lz | [4] is the maximal value of the z-component of the quark orbital angular momentum in
the LF wavefunction or the minimum of the orbital angular momentum of the corresponding hadron. These actions give
information about the propagation of bulk fields inside AdS space (bulk-to-bulk propagators), from inside to the boundary
of the AdS space (bulk-to-boundary propagators) and bound state solutions-profiles of the Kaluza–Klein (KK) modes in
extra-dimension, which correspond to the hadronic wave functions in impact space. We suppose a free propagation of the
bulk field along the d Poincaré coordinates with four-momentum p, and a constrained propagation along the (d + 1)-th
coordinate z (due to confinement imposed by the dilaton field). In particular, it was shown [4] that the extra-dimensional
coordinate z corresponds to the light-front impact variable. It was also shown [7] that in case of the scattering problem the
sign of the dilaton profile is important to fulfill certain model-independent constraints. But we recently showed [9] that
in case of the bound state problem the sign of the dilaton profile is irrelevant, if the action is properly set up. Moreover,
in solving the bound-state problem, it is more convenient to move the dilaton field from the exponential prefactor to the
effective potential [4,9]. Thenwe use a KK expansion for the bulk fields factorizing the dependence on d Poincaré coordinates
x and the holographic variable z. e.g. in case of scalar field it is given by S(x, z) =


n Sn(x) Φn(z), where n is the radial

quantum number, Sn(x) is the tower of the KK modes dual to scalar mesons and Φn are their extra-dimensional profiles
(wave-functions) satisfying the Schrödinger-type equation with the potential depending on the dilaton field. Then using
the obtained wave functions Φn, we calculate matrix elements describing hadronic processes.

3. Results

We present the results of our calculations for mesonic decay constants (Table 1), the meson spectrum (Tables 2
and 3) [10] and the baryon spectrum (Tables 4 and 5). A detailed analysis of nucleon helicity-independent generalized
parton distributions (GPDs) Hq

v and Eq
v [11] is discussed. Note, by construction we reproduce the power scaling of nucleon

electromagnetic (EM) form factors at large Q 2 [13,11]:
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where Q 2
= −t . The Ci functions, defining the Dirac and Pauli factors, are given by:
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