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We compare the stochastic resonance (SR) effects in parallel arrays of static and dynamical nonlinearities 
via the measure of output signal-to-noise ratio (SNR). For a received noisy periodic signal, parallel arrays 
of both static and dynamical nonlinearities can enhance the output SNR by optimizing the internal 
noise level. The static nonlinearity is easily implementable, while the dynamical nonlinearity has more 
parameters to be tuned, at the risk of not exploiting the beneficial role of internal noise components. 
It is of interest to note that, for an input signal buried in the external Laplacian noise, we show that 
the dynamical nonlinearity is superior to the static nonlinearity in obtaining a better output SNR. This 
characteristic is assumed to be closely associated with the kurtosis of noise distribution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic resonance (SR) is a nonlinear phenomenon where the 
response of a nonlinear system to input signals can be enhanced 
by the addition of noise [1–16]. The SR effect was originally found 
in a bistable system driven by a subthreshold periodic input signal 
and additive noise [1–4]. Naturally, the coupled [17,18] and parallel 
arrays [19–24] of nonlinear systems were investigated on exploit-
ing the constructive role of internal noise in further improvement 
of the system performance. Recently, the SR effects in complex net-
works [25–27] were also adequately evaluated. It is verified that 
an interconnected network configuration, as well as the internal 
noise level, can be optimized to achieve the best network response 
[25–27].

Initially, the output signal-to-noise ratio (SNR) was adopted as 
a metric for describing the signature of SR [2,5,28–30], behaving 
a non-monotonic function of the background noise intensity. Since 
then, the SNR is frequently employed to show the conventional SR 
effect in a nonlinear system subjected to a noisy input [2,5,30–36]. 
Among these researches, it is interesting to note that the output–
input SNR gain exceeds unity for a ‘soft’ double-well potential 
dynamical model driven by a suprathreshold signal [33,34]. Mean-
while, the SR effect displayed in a class of static nonlinearities that 
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exhibit saturation in their responses to input biased signals [35]. 
Both models in Refs. [33,35] contain a nonlinear hyperbolic tangent 
transfer function. Therefore, it deserves to contrastively evaluate 
the abilities of dynamic and static models to enhance the output 
SNR within the context of SR.

In this paper, we compare the SR effects in parallel arrays of 
static and dynamical nonlinearities for processing a periodic sig-
nal in additive white noise. It is shown that, in an array of static 
nonlinearities, the SR phenomenon only occurs as the array size is 
large enough. While, for a parallel array of dynamical nonlinear 
elements, the potential bistability might be broken as the sys-
tem parameters vary, and rich behaviors of the output SNR are 
shown as a function of the internal noise level and the array size. 
By comparison, the output maximum SNR of an array of static 
nonlinearities is predominant in the condition of external Gaus-
sian white noise. However, when the external white noise is a 
type of non-Gaussian noise, e.g. Laplacian noise, the output SNR 
of the dynamical nonlinearity is superior to that of the static non-
linearity. We can characterize the non-Gaussian noise distribution 
with its kurtosis [37,38], and also demonstrate Gaussian noise has 
the worse for the SNR enhancement of both static and dynamical 
systems. The present comparison results show that the nonlinear 
phenomenon of SR can be discovered in both static and dynami-
cal systems for improving the overall performance. While, in view 
of characteristics of static and dynamical nonlinearities, we need to 
choose the relative optimal array to process the input signal buried 
in different noise types.
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Fig. 1. A parallel array of N nonlinear elements. Each element is subject to the same noisy input s(t) + ξ(t) but independent array noise ηi(t). The array output is y(t) =∑N
i=1 xi(t)/N .

2. General model

Consider the observation of a process v(t) = s(t) + ξ(t), where 
the component s(t) is a periodic sinusoidal signal with maximal 
amplitude A (|s(t)| ≤ A) and period T , and zero-mean additive 
white noise ξ(t), independent of s(t), has a probability density 
function (PDF) fξ and variance σ 2

ξ = Eξ [x2] = ∫ ∞
−∞ x2 fξ (x)dx. Next, 

v(t) is applied to an uncoupled parallel array of N identical static 
or dynamical nonlinearities [20], as shown in Fig. 1. The terms 
ηi(t), independent of v(t), represent the internal noise components 
for each element, so as to yield the outputs xi(t), i = 1, 2, . . . , N . 
The internal noise components ηi(t) are mutually independent 
and identically distributed (i.i.d.) with the same PDF fη and vari-
ance σ 2

η . Then, as shown in Fig. 1, the array output y(t) is given 
by

y(t) = 1

N

N∑
i=1

xi(t). (1)

Since s(t) is periodic, y(t) is in general a cyclostationary ran-
dom signal with period T [3]. The nonstationary mean E[y(t)] is a 
deterministic periodic function of time t with period T . A classi-
cal definition of the SNR, at frequency 1/T on the output, follows 
as the ratio of the power contained in the spectral line alone to 
the power contained in the noise background in a small frequency 
band �B around 1/T . The corresponding expression of the output 
SNR is then given by [3]

Rout = |〈E[y(t)]exp(−ı2πt/T )〉|2
〈var[y(t)]〉H(1/Ts)�B

, (2)

where the nonstationary expectation

E
[

y(t)
] = 1

N

N∑
i=1

E
[
xi(t)

] = E
[
xi(t)

]
, (3)

and nonstationary variance

var
[

y(t)
] = E

[
y2(t)

] − E2[y(t)
]

= 1

N
E
[
x2

i (t)
] + N − 1

N
E
[
xi(t)x j(t)

] − E2[xi(t)
]
, (4)

for i, j = 1, 2, . . . , N and i �= j. Here, the temporal operator 〈·〉 =∫ T
0 · dt/T , and H(ν) is the Fourier transform of the normalized sta-

tionary autocovariance

h(τ ) = 〈E[y(t)y(t + τ )] − E[y(t)]E[y(t + τ )]〉
〈var[y(t)]〉 . (5)

As the array size N → ∞, we note that Eq. (4) becomes
limN→∞ var[y(t)] = E[xi(t)x j(t)] − E2[xi(t)] and Eq. (5) can be ex-
pressed as

lim
N→∞ h(τ ) = 〈E[xi(t)x j(t + τ )] − E[xi(t)]E[x j(t + τ )]〉

〈E[xi(t)x j(t)] − E2[xi(t)]〉 . (6)

In this case, the output SNR of an array of the nonlinearities can 
be written as

R∞
out = |〈E[xi(t)]exp(−ı2πt/T )〉|2

〈E[xi(t)x j(t)] − E2[xi(t)]〉H(1/Ts)�B
, (7)

for i �= j, which makes the numerical calculation of the output 
SNR of a parallel array of nonlinearities with infinity size N = ∞
possible. Since the indices i and j are different, but arbitrary in 
Eq. (7), we can adopt two different nonlinear systems, each em-
bedded with independent noise, to evaluate the output SNR of a 
parallel array with size N = ∞ [3,31]. This method is tractable and 
effective. In the same way, the mixture v(t) = s(t) + ξ(t) has an 
input SNR defined as

R in = |〈s(t)exp(−ı2πt/T )〉|2
σ 2

ξ �t�B
, (8)

with �t indicating the time resolution or the sampling period in 
a discrete-time implementation [3]. For a sinusoidal signal s(t) =
A sin(2πt/T ) buried in white noise, the input SNR can be simpli-
fied as R in = A2/(4σ 2

ξ �t�B) [3].

3. Comparison results of static and dynamical nonlinearities 
in array SR

In this subsection, we observe the SR effects in arrays of static 
and dynamical nonlinearities. First, consider the static nonlinearity 
with saturation

xi(t) = tanh
[
β
(
s(t) + ξ(t) + ηi(t)

)]
, (9)

with slope β > 0, which is linear for small |u| 	 β−1 and saturates 
at ±1 for large |u| 
 β−1 [28,35].

Secondly, a dynamical nonlinearity [33,34]

dxi(t)

dt
= −xi(t) + J tanh

[
βxi(t)

] + s(t) + ξ(t) + ηi(t), (10)
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