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The role of fragmentation in the adaptive process is addressed. We investigate how landscape structure 
affects the speed of adaptation in a spatially structured population model. As models of fragmented 
landscapes, here we simulate the percolation maps and the fractal landscapes. In the latter the degree of 
spatial autocorrelation can be suited. We verified that fragmentation can effectively affect the adaptive 
process. The examination of the fixation rates and speed of adaptation discloses the dichotomy exhibited 
by percolation maps and fractal landscapes. In the latter, there is a smooth change in the pace of 
the adaptation process, as the landscapes become more aggregated higher fixation rates and speed of 
adaptation are obtained. On the other hand, in random percolation the geometry of the percolating 
cluster matters. Thus, the scenario depends on whether the system is below or above the percolation 
threshold.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The field of landscape genetics has emerged ten years ago 
and aims to improve our understanding about the interplay be-
tween landscape environmental features and evolutionary pro-
cesses. Landscape genetics couples ideas and developed tools from 
the established fields of landscape ecology and population genet-
ics [1].

Landscape structure largely influences the distribution of ge-
netic variation, amount of genetic variation and gene flow [2]. The 
detection of sharp genetics changes or discontinuities on a geo-
graphic zone and the correlation of these changes with landscape 
environmental features are the target of landscape genetics. It is 
important to understand how the gene flow influences the genetic 
structure of a population, since it can provide useful information 
about the factors that enable and prevent local adaptation [1,3].

Adaptation proceeds through the occurrence and subsequent 
fixation of advantageous mutations [4–9]. The speed at which 
natural populations evolve is tightly constrained to the distribu-
tion of individual’s fitness in the population [10], which by its 
turn is strongly dependent on the distribution of genetic variation, 
amount of genetic variation and gene flow. These factors can op-
erate synergistically and produce an unpredictable outcome on the 
rate at which populations adapt.

Only recently we have observed a growing interest of the pop-
ulation genetics’ community to address adaptive evolution in spa-
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tially structured population models [11–13]. By spatially structured 
population model we mean that the population is arranged over 
a two-dimensional square lattice. The study of the adaptive pro-
cess in a spatially explicit context has recently been boosted by 
the growing interest of investigating biofilms, which is actually the 
prevailing microbial lifestyle, whereby microbes attach to surface 
and then develop complex structures [14]. The study of adap-
tive responses to pathogen-induced selective pressure in humans 
has also motivated the study of evolutionary dynamics within 
the same framework [15–17]. An interesting finding is the ob-
servation that structuring affects the speed at which population 
adapts to the environment, a feature that is demonstrated em-
pirically [18,19], and also corroborated by structured population 
models [11,20]. In fact these studies show that adaptation pro-
ceeds more slowly in a spatially structured environment than in 
one whereby competition is global (non-structured populations), 
especially in the regime of high mutation rates. Though, the previ-
ous studies make the simplifying assumption that the substrate is 
non-fragmented (all cells in the lattice are considered to be suit-
able for occupation), a condition which is hardly met in natural 
biofilms. Indeed, in a recent survey it was shown that microbial 
communities in aquatic ecosystems display a fractal pattern [21]. 
As argued by the authors, the formation of biofilms is greatly af-
fected by diverse factors which include nutrient levels, medium 
types, light, and so on. In the study the reported values of fractal 
dimensions of the surface formed by the packed communities of 
microbes lie in the range 1.3–1.5. As another instance, for example, 
Asally et al. have studied the dynamics between cellular and me-
chanical processes during the self-organization of Bacillus subtilis
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Fig. 1. Illustration of a non-fragmented (left panel) and fragmented (right panel) 
two-dimensional lattice as used in our simulations. The black cell in the right panel 
represents an unsuitable habitat. In the case of von Neumann neighborhood as as-
sumed in our model the individuals placed in the five cells (left panel) or four cells 
for the fragmented case (blue + red) highlighted in the figure can reproduce and 
leave an offspring in the focal cell (red cell) for the next generation. The probability 
to reproduce in every reproduction event is proportional to the individual’s fitness. 
This process is repeated for every cell in the lattice. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

cells into wrinkled biofilms (fractal structures) [22]. An interesting 
observed feature is that indeed the wrinkle structures constitute a 
population-level stress response of biofilms, a process which en-
hances the microbial resilience against environmental extremes.

To address the role of the landscape structure on the adaptive 
process within a theoretical framework we investigate a spatially 
structured population model in a fractal landscape whereby the 
degree of ruggedness can be tuned. The lattice is no longer homo-
geneous but rather fragmented such that some sites are considered 
to be unsuitable habitats. Two mathematical models are used to 
build up the fragmented landscapes: percolation maps and frac-
tal landscapes. In the former, widely known as a simple example 
of a physical model that displays a phase-transition, the dilution is 
completely random such that every site is independently labeled as 
suitable (with probability p) or unsuitable (with probability 1 − p) 
[23]. Meanwhile, in fractal landscapes one can additionally tune 
the level of spatial autocorrelation, such that it is feasible to pro-
duce extremely rough or very compact surfaces by varying the 
Hurst parameter H .

The present study focuses on measuring how the topological 
properties of the landscape can affect the speed of adaptation 
in in silico populations. By changing the Husrt exponent H one 
modifies how compact the clusters are. This means that for low 
H different regions of the cluster will be connected by narrow 
corridors where supposedly beneficial mutations can spread. In 
short, the Hurst exponent tunes the gene flow. For high mutation 
rates the increase on the number of narrow corridors enhances 
the competition among segregating mutations, and hence can al-
ter the strength of clonal interference, which affects the speed of 
adaptation. This investigation is carried out by means of extensive 
computer simulations. The remainder of the paper is organized as 
follows: The model is described in the next section. In Section 3
we describe the simulation results, and finally in Section 4 we 
present the concluding remarks.

2. Materials and methods

2.1. The model

We consider an asexual population of haploid organisms. The 
population is finite and the individuals are distributed over the 
suitable habitats of a two-dimensional regular lattice of linear 
size L. The fraction of suitable habitats is p, where 0 ≤ p ≤ 1. Each 
suitable habitat is occupied by a single individual. The environ-
ment is always saturated, i.e., suitable habitats are not allowed to 
be empty. Periodic boundary conditions are assumed.

The population evolves following the Wright–Fisher model with 
non-overlapping generations, but rather than competing with ev-
ery other individual for reproduction, they compete locally with 
their immediate neighbors (von Neumann neighborhood is consid-
ered). Because non-overlapping generations are assumed, at each 
time step all individuals on the population are replaced. The prob-
ability that an individual reproduces is proportional to its fitness. 
Each individual can contribute with offsprings at its position but 
also in its immediate neighborhood. Since von Neumann is con-
sidered each individual competes for reproduction in five cells. At 
each of these reproduction events the probability to be the parent 
of an offspring in a given cell is

p j = ω j
∑

k ωk
, (1)

where p j corresponds to the probability that individual j produces 
an offspring in a given cell and ω j denotes its fitness value. The 
summation in Eq. (1) is taken over the five cells (immediate neigh-
borhood and the focal cell), but only suitable habitats are viable to 
produce offspring (please see Fig. 1). The fitness ω j is just given 
by ω j = ∏nb

�=1(1 + s�), where nb is the number of beneficial mu-
tations present in the individual and s� is the selective effect of 
the �-th mutation which by its turn is taken from an exponen-
tial distribution of mean 1/α. In the simulations α is set to 20, 
which corresponds to a mean-effect value of 5%. In the model we 
study adaptation under the assumption that deleterious mutations 
die quickly and survive at a negligible rate. This is justified on the 
basis of earlies studies about the dynamics of adaptation when the 
influx of beneficial mutation is high [24–26]. During reproduction, 
the offspring inherits the parent’s genome but additional muta-
tions occur at a constant rate Ub .

In the model migration is not explicitly assumed. Mutations can 
spread over the whole population by reproduction, since the most 
adapted individuals can reproduce and leave offspring in its neigh-
borhood. In this way mutations spread in the form of waves [27].

2.2. Fragmented landscapes

2.2.1. Percolation maps
Percolation maps were the first neutral models considered in 

the field of landscape ecology [28,29]. The model was conceived 
to provide simple binary lattices of habitats and uses a single pa-
rameter p that controls the fraction of occupied cells. Each cell of 
the lattice is considered to be a suitable habitat with probability p
and unsuitable with the complementary probability q = 1 − p. An 
amazing feature of the percolation model is the existence of a criti-
cal probability p = pc ≈ 0.5927 [30], dubbed percolation threshold, 
beyond this point a spanning cluster always arises in the ther-
modynamic limit. For values of p smaller than pc the lattice is 
composed of many small and isolated clusters. The lower panels of 
Fig. 2 show instances of percolation maps for distinct values of the 
occupation parameter p. The middle panel highlights the percolat-
ing cluster which is red-colored.

2.2.2. Fractal landscapes
Despite the percolation maps have been applied to several stud-

ies it does not allow us to tune the level of spatial autocorrela-
tion of the landscape. There are some methods to render land-
scapes with more complex spatial patterns. One of the most useful 
mathematical models for creation of correlated landscapes is the 
fractional Brownian motion (fBm) [31,32], a generalization of the 
central concept of Brownian motion. The most important charac-
teristic of this mathematical model is that the correlation between 
successive steps is controlled by the parameter H , known as the 
Hurst exponent, which lies in the range 0 ≤ H ≤ 1. When H is 
around one the landscape is smooth, and opposedly when H is 
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