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The intrinsic localization of electrostatic wave energies in quantum semiconductor plasmas can be 
described by solitary pulses. The collision properties of these pulses are investigated. In the present 
study, the fundamental model includes the quantum term, degenerate pressure of the plasma species, 
and the electron/hole exchange–correlation effects. In cylindrical geometry, using the extended Poincaré–
Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after 
the collision of two soliton rings are derived. Typical values for GaSb and GaN semiconductors are used 
to estimate the basic features of soliton rings. It is found that the pulses of GaSb semiconductor carry 
more energies than the pulses of GaN semiconductor. In addition, the degenerate pressure terms of 
electrons and holes have strong impact on the phase shift. The present theory may be useful to analyze 
the collision of localized coherent electrostatic waves in quantum semiconductor plasmas.

© 2014 Elsevier B.V. All rights reserved.

Actually, the primary motivation for rapid growth in the study 
of quantum plasma physics is in its potential applications in dif-
ferent scientific areas such as quantum computers, semiconduc-
tor devices, quantum wells, carbon nanotubes, quantum diodes, 
ultra-cold plasmas, and intense laser-solid density plasma exper-
iments [1–4]. Quantum plasma physics has a very high particle 
number density and a low particle temperature in comparison 
with classical plasmas where the plasma particle number density 
is relatively low, and the plasma temperature is rather high. Fur-
thermore, the rapid development of laser technology has provided 
excellent opportunities to construct table-top laser sources of fem-
tosecond pulses and powerful laser pulses [5,6]. Such high power 
laser pulses will open a new window for carrying out research 
dealing with nonlinear interactions between intense laser beams 
and plasmas in quantum regimes [7,8]. In accordance with this, 
interactions of intense lasers with quantum plasmas have been an 
important topic of modern plasma researches. For example, the in-
tense laser pulse interacting with matter can create electron–hole 
plasmas at high densities (i.e., quantum plasmas) [9], where elec-
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trons absorb the photon energy by single-photon or multi-photon 
absorption and transit from the valence to the conduction band 
with holes created in the valence band. Accordingly, the quantum 
mechanical effects ought to be considered, since the de Broglie 
thermal wave length of the charge carriers could be comparable 
to characteristic spatial scales of the system in modern minia-
ture semiconductor electronic devices. Therefore, it is important 
to understand and investigate the quantum mechanical effects on 
the dynamics of the charged carriers (i.e., electrons and holes) in 
semiconductor quantum devices which work in nanoscale sizes, 
such as quantum wells and quantum dots. On the other hand, the 
quantum mechanical effects (e.g., tunneling of degenerate plasma 
species through the Bohm potential barrier, exchange interactions 
and correlations, pressures of degenerate particles, etc.) are ex-
pected to play a very important role in the collective behavior of 
the charged carriers at quantum scales in semiconductor electronic 
devices. It is well known that, strong nonlinear interactions of the 
electrons and holes in bounded quantum devices can be separated 
into a Hartree term due to the electrostatic potential of the to-
tal electron/hole density and an electron/hole exchange–correlation 
term. When the electron/hole density is sufficiently high, and the 
electron/hole temperature is low, especially, in bounded quantum 
devices, the electron/hole exchange–correlation effects should be 
important [10–13].
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Nonlinear solitary waves occur in various physical contexts [14]. 
In general; solitary waves are formed in plasmas due to a balance 
between nonlinear steepening and dispersion, and even main-
tained their shape after mutual interactions (collisions) [15], earn-
ing them later the name of “solitons” [16], to emphasize their 
particle-like character. Indeed, the unique effect due to the col-
lision between solitary waves is their phase shift and the tra-
jectories. Experimentally, the soliton have been carried out for a 
number of materials and semiconductors such as: Al2O3 [17–20], 
Si [17,21], sapphire [22], MgO [17,23], SiO2 [17], and GaAs [24]. 
Theoretically, the features of solitary waves in different semicon-
ductors are investigated [25–28]. For instance, it is found that 
the degenerate pressure term plays an important role in shrink-
ing the pulse height and width more than the other quantum 
effects [26]. Recently, the modulational instability of quantum 
electrostatic acoustic waves in electron–hole quantum semicon-
ductor plasmas is investigated using the quantum hydrodynamic 
model [27]. They illuminated that the damping rate is dependent 
on the quantum effects, the electron–phonon (hole–phonon) colli-
sion frequency, and the ratio of the electron effective mass to hole 
effective mass.

Lately, the properties of linear and nonlinear quantum electro-
static acoustic waves in an electron–hole semiconductor quantum 
plasma taking into account the combined effects of the quan-
tum recoil, the degenerate pressure effects, and the exchange–
correlation potential due to spin are studied [28]. They demon-
strated that the numerical simulations of the rarefactive solitons 
are stable and can withstand perturbations and turbulence for a 
considerable time. However, the reality which cannot be ignored 
is that the propagation of solitary waves may not be only a real-
istic situation in bounded quantum devices but also the collision 
of solitary waves with each other may be more realistic situation. 
Successfully, the extended Poincaré–Lighthill–Kuo (PLK) method is 
used in many branches of physics to investigate the interaction 
between solitons [29–34]. Anyway, the characteristics of the quan-
tum plasma with electron exchange–correlation effects in bounded 
cylindrical domain have not been understood very well. To the 
best of our knowledge, this is the first study on propagation and 
collision of soliton rings (pulses) in quantum semiconductor plas-
mas. Therefore, the motive of this article is to present a theoretical 
model for investigating the geometry effect, degenerate pressure of 
plasma species effects, and the electron/hole exchange–correlation 
effects on the propagation and collision of soliton rings in an 
electron–hole semiconductor plasma.

Let us consider the propagation of nonlinear soliton rings in a 
cylindrical semiconductor plasma consisting of electrons and holes. 
The dynamics of nonlinear soliton rings can be described by the 
normalized quantum hydrodynamics equations [26,27,35,36].
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where subscript s is e for electrons and h for holes. Here, the vari-
ables ns and us are the densities and the velocities of two fluids. 

φ is electrostatic potential. In Eq. (2), it should mentioned here 
that the fourth term is the exchange–correlation forces, where the 
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the fifth term represents the degenerate pressure that is de-
rived from Ps = Ksn5/3

s , where Ks = (5/3)(π/3)1/3(π�
2/m∗

s ), 
and sixth term is the quantum recoil force associated with the 
Bohm potential due to the electrons/holes tunneling through a 
potential barrier. The charge neutrality at equilibrium requires, 
ne0 = nh0 = n0. Here, for electrons, μe = −1, γe = 1/kBTFe, 
σe = (π/3)1/3(π�
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he2) and Hh =
(�ωpe/2kBTFh)μ. The following normalizations are used ns →
ns/ns0, us → us/V Fe, φ → eφ/kBTFe, t → tωpe, and r → rλDFe, 
where V Fe (= √

kBTFe/m∗
e ) is the Fermi electron speed,

ωpe (= √
4πe2ne0/m∗

e ) is the electron plasma frequency, and 
λDFe (= √

kBTFe/4πe2ne0 ) is the Fermi electron Debye radius. 
ne0 (nh0) is the unperturbed electron (hole) density, m∗

e (m∗
h) is 

the electron (hole) effective mass, TFe (TFh) is the Fermi tempera-
ture of the electron (hole), � is Planck constant divided by 2π , ε is 
the dielectric constant of the material, e is the magnitude of the 
electron charge, kB is Boltzmann constant.

In order to study the collision between soliton rings, let us as-
sume two soliton rings S1 and S2 in electron–hole semiconductor 
quantum plasma, which are asymptotically, far apart in the initial 
state and travel toward each other. After some time they inter-
act, collide, and then depart. In addition, we also consider soliton 
rings have small amplitudes ∼ε (where ε is a smallness formal 
perturbation parameter characterizing the strength of nonlinear-
ity) and the interactions between soliton rings are weak. Hence, 
we expect that the collision will be quasielastic, so it will cause 
only shifts of the postcollision trajectories (phase shift). Now, let 
us use the extended PLK method to derive two coupled Kortwege–
de Vries (KdV) equations. According to this method, the depen-
dent variables are expanded as Ψ = Ψ (0) +∑∞

n=1 ε(n+1)Ψ (n) , where 
Ψ = [ne, nh, ue, uh, φ], and Ψ (0) = [1, 1, 0, 0, 0]. Furthermore, the 
independent variables can be stretched as ξ = ε(r − λt − r1) +
ε2 P (0)(η, R) + . . . , η = ε(r + λt − r2) + ε2 Q (0)(ξ, R) + . . . , and 
R = ε3r, where ξ and η denote the trajectories of two soliton 
rings traveling toward to each other. Here r1 and r2 are the initial 
positions of two soliton rings and r2 > r1 > 0 for the cylindrical 
geometry. The functions of P (0)(η, R), Q (0)(ξ, R), and the wave 
velocity λ are to be determined later. Substituting the stretched 
variables ξ , η, and R , and dependent variables ne, nh, ue, uh and φ

into Eqs. (1)–(3), one can obtain the lowest nonzero order in ε,
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