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The effect of the dynamic pressure (non-equilibrium pressure) on stationary heat conduction in a rarefied
polyatomic gas at rest is elucidated by the theory of extended thermodynamics. It is shown that this
effect is observable in a non-polytropic gas. Numerical studies are presented for a para-hydrogen gas as
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1. Introduction

Heat conduction is one of the basic non-equilibrium phenom-
ena already studied by many researchers, although several fun-
damental questions remain still open. In the present Letter, we
study the stationary heat transfer in a rarefied polyatomic gas at
rest, confined in a bounded domain in planar or radial geome-
try. To our knowledge, this is the first analysis of heat conduction
in which the effect of the dynamic pressure is investigated. As is
well known, the dynamic pressure vanishes identically in a rarefied
monatomic gas, while it is intrinsically related to the internal de-
grees of freedom of the polyatomic molecules. Therefore, what we
will analyze here is a polyatomic effect.

In the literature on heat conduction in such gases, the theo-
retical studies have been carried out mainly based on the kinetic
theory, for example, see Ref. [1]. However, for the heat conduc-
tion problem in particular, the role of the dynamic pressure has
been always overlooked, although the dynamic pressure has been
actively discussed in literature starting from Leontovich and Man-
delshtam [2,3] (see also Refs. [4,5], Section 78 of Ref. [6] and Chap-

* Corresponding author.
E-mail addresses: arima@kanagawa-u.ac.jp (T. Arima), ebarbera@unime.it
(E. Barbera), francesca.brini@unibo.it (F. Brini), sugiyama@nitech.ac.jp
(M. Sugiyama).

http://dx.doi.org/10.1016/j.physleta.2014.07.031
0375-9601/© 2014 Elsevier B.V. All rights reserved.

ter 12 of Ref. [7]) and has been studied in various phenomena, for
example, dispersion of sound waves [7], reacting gas flows [8,9].
In addition, the kinetic theory encounters serious difficulty in the
modeling of the collision term between polyatomic molecules of
gases in which the internal modes play an important role.

The experimental studies for polyatomic gases have been pre-
sented only in the case of a nitrogen (Ny) gas in [10], where a
highly rarefied gas is confined between two parallel plates kept
at different temperatures. In that paper, the mass density is mea-
sured inside the device through a luminescence technique, while
the total heat flux is presented as a function of the inverse of
the Knudsen number (the ratio between the mean free path of
a molecule and the characteristic length of the domain).

In order to achieve our aim, we adopt the extended thermo-
dynamics (ET) theory [11] because, as shown later, the classical
Navier-Stokes Fourier (NSF) theory [7,6] is insufficient for the de-
scription of the phenomena under consideration. The ET theory has
been constructed in a phenomenological way in which the spatio-
temporally local constitutive equations are severely restricted by
imposing the universal physical principles and therefore this the-
ory is free from the difficulty of the kinetic theory. We recall
that, also for monatomic gases, ET and NSF carry mutually differ-
ent results in the heat transfer problem both for single gases (see
[12-14] and the references therein) and for gas mixtures [15-17].
Here, we will use an ET theory with 14 independent fields (ET14)
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[18-20]. These 14 fields have well-established macroscopic physi-
cal meanings and also appear in the NSF theory, while the mean-
ings of the higher moments which are discussed in the theory of
moment equations [21,22] are usually difficult to be grasped.

ET14 has been already applied successfully to various subjects:
heat conduction in a van der Waals fluid [23], sound waves [24,25],
light scattering [26] and shock waves [27-29]. From the kinetic
theory, it was also proven [30] that ET14 is perfectly consistent
with molecular ET with the method of closure by the maximum
entropy principle [31-33].

In this Letter, we will study heat conduction in non-polytropic
rarefied gases and present as a numerical example the para-
hydrogen (p-Hy) gas case.

2. ET14 theory

The ET14 theory is a phenomenological continuum theory for
both dense and rarefied polyatomic gases [18-20]. The theory
adopts the binary hierarchy of the balance equations with the 14
independent field variables: the mass density p, the velocity v;,
the temperature T, the shear stress Sy (symmetric traceless part
of the viscous stress S;;), the dynamic pressure I7T (= —S;;/3), and
the heat flux q;, where i, j = 1,2, 3. Here and hereafter summa-
tion on repeated indices is assumed. The stress tensor is given by
tij = —pdij + Sjj if p denotes the equilibrium pressure and § is the
Kronecker symbol. All these field variables take part also in the
NSF theory.

Usually in ET the constitutive equations are determined through
the validity of general principles: the objectivity principle (that is,
the material frame indifference principle and the Galilean invari-
ance for the balance equations), the entropy principle (the second
law of thermodynamics), and the causality principle. For this prob-
lem, as shown in [11], the constitutive equations are explicitly ex-
pressed by the equilibrium thermal and caloric equations of state.
In the present study, we adopt the equations of state for a classical
(i.e., non-degenerate) ideal gas expressed by

_k

e =¢(T), (M
where ¢, kg and m are, respectively, the specific internal energy,
the Boltzmann constant and the mass of a molecule. Note that the
gas under consideration could be, in general, non-polytropic, that
is, its specific heat at constant volume c,(= de/dT) could be a
non-constant function of the temperature.

The closed system of field equations in the Cartesian coordinate
system is given by
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where a dot on a quantity indicates the material time derivative:
()=0()/0t +v;d()/dx;; Cy is the dimensionless specific heat:
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the relaxation times 7s, Ty and 74 are in general functions of p
and T.

ET14 contains the NSF theory as a special case in the limit of
small relaxation times. By the Maxwellian iteration [11,18,34], s,
757 and 74 evaluated at a reference equilibrium state are related to
the shear viscosity u, the bulk viscosity v and the heat conductiv-
ity k:

(3)
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For the sake of simplicity, in the present Letter we assume that
the relaxation times have constant values, prescribed by the den-
sity and the temperature range under consideration.

3. Basis of the present analysis

We confine our study within stationary one-dimensional heat
transfer problem in a gas at rest, referring to planar or cylindri-
cal or spherical geometry. All relevant physical quantities will be
expressed in terms of the physical components [35].

3.1. Basic system of equations

We adopt the following dimensionless quantities:
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where x represents the position along the axis normal to the
plates in the planar case or the radius in the radial geometries,
L is the distance between the two boundaries, pp and Tg de-
note some reference values for temperature and pressure, and
pp = (kg/m)ppTy. It is interesting to note that the dimension-
less relaxation time s is proportional to the Knudsen number Kn.
Then, for the sake of simplicity, we may assume Kn = Ts.
System (2) becomes:
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