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evaluated in the case of weak field limit, slow rotation and small deformation. To this aim the Hartle-
Thorne metric is used, which is an approximate solution of the vacuum Einstein equations accurate
to second order in the rotation parameter a/M and to first order in the mass quadrupole moment gq.
Implications on atmospheric, solar and astrophysical neutrinos are discussed.
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1. Introduction

In the Standard Model with minimal particle content neutri-
nos are massless left-handed fermions. The question whether neu-
trinos have a non-vanishing rest mass influences research areas
from particle physics up to cosmology, but it remains an open is-
sue [1]. At present all hints for neutrino masses are connected with
neutrino oscillation effects, namely the solar neutrino deficit, the
atmospheric neutrino anomaly and the evidence from the LSND
experiment [2]. Possible extensions of the Standard Model to gen-
erate neutrino masses are reviewed, e.g., in Ref. [3].

Mass neutrino mixing and oscillation in flat spacetime were
proposed by Pontecorvo [4]. Later on Mikheyev, Smirnov and
Wolfenstein [5] investigated the effect of transformation of one
neutrino flavor into another in a medium with varying density.
There have been many experimental studies exploring the evidence
for oscillations of both atmospheric and solar neutrinos as well as
imposing limits on their masses and mixing angle (see, e.g., Ref. [6]
and references therein).

The possibility to detect CP violation effects in neutrino oscil-
lations by future experiments has also been considered in recent
years [7-10]. Neutrino oscillation experiments are expected to pro-
vide stringent bounds on many quantum gravity models entailing
violation of Lorentz invariance, so allowing to test quantum gravity
theories [11,12]. Planck scale-induced deviations from the stan-
dard oscillation length may be observable for ultra-high-energy
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neutrinos emitted by galactic and extragalactic sources by means
of the next generation neutrino detectors such as IceCube and
ANITA [13]. Furthermore, since neutrinos can propagate freely over
large distances and can therefore pile up minimal length effects
beyond detectable thresholds, there is the possibility to explore
the presence of a quantum-gravity-induced minimal length using
neutrino oscillation probabilities [14].

The effect of gravitation on the neutrino oscillations has been
extensively investigated in the recent literature, starting from the
pioneering work of Stodolsky [15]. The correction to the phase
difference of neutrino mass eigenstates due to the spherically
symmetric gravitational field described by the Schwarzschild met-
ric was calculated in various papers within the WKB approxima-
tion [16-20]. The results obtained in these papers differ from each
other due to different methods used to perform the calculation.
For instance, calculating the phase along the timelike geodesic line
will produce a factor of 2 in the high energy limit, compared with
the value along the null line [21]. A different method was proposed
by Linet and Teyssandier [22], based on the world function devel-
oped by Synge [23] and defined as half the square of the spacetime
distance between two generic points connected by a geodesic path.
Unfortunately, the calculation of the world function is not a trivial
task. In general, it is performed perturbatively unless the solution
of the geodesic equations is explicitly known, as in the very special
cases of Minkowski, Godel, de Sitter spacetimes and the metric of
a homogeneous gravitational field [24]. The effect of spacetime ro-
tation on neutrino oscillations has been investigated in Ref. [25],
where the Kerr solution was considered. A mechanism to gen-
erate pulsar kicks based on the spin flavor conversion of neu-
trinos propagating in a slowly rotating Kerr spacetime described
by the Lense-Thirring metric has been recently proposed [26].
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Furthermore, the neutrino geometrical optics in a gravitational
field and in particular in a Lense-Thirring background has been
investigated [27]. Finally, in Ref. [28] the generalization to the case
of a Kerr-Newman spacetime has been discussed.

In the present Letter we calculate the phase shift in the grav-
itational field produced by a massive, slowly rotating and quasi-
spherical object, described by the Hartle-Thorne metric. This is an
approximate solution of the vacuum Einstein equations accurate to
second order in the rotation parameter a/M and to first order in
the mass quadrupole moment ¢, generalizing the Lense-Thirring
metric. We then discuss possible implications on atmospheric, so-
lar and astrophysical neutrinos. The units G =c =h =1 are used
throughout the Letter.

2. Stationary axisymmetric spacetimes and neutrino oscillation

The line element corresponding to a general stationary axisym-
metric solution of the vacuum Einstein equations can be written in
the Weyl-Lewis—Papapetrou [29-31] form as

s2 = —f(dt — wdg)?
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by using prolate spheroidal coordinates (t,x,y,¢) with x > 1,
—1 < y < 1; the quantities f, w and y are functions of x and y
only and o is a constant. The relation to Boyer-Lindquist coordi-
nates (t,r, 0, ¢) is given by
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y =cos0, ¢ =¢. (2)

2.1. Geodesics

The geodesic motion of test particles is governed by the follow-
ing equations [32]
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where Killing symmetries and the normalization condition gy g%* x
%P = —u? have been used. Here E and L are the conserved energy
(associated with the Killing vector 9;) and angular momentum
(associated with the Killing vector 94) of the test particle respec-
tively, u is the particle mass and a dot denotes differentiation with
respect to the affine parameter A along the curve; furthermore,
the notation

X=vx2—1, Y=,/1-y2 (4)

has been introduced. For timelike geodesics, A can be identified
with the proper time by setting ; = 1. Let U be the associated
4-velocity vector (U - U = —1). Null geodesics are characterized in-
stead by i = 0. Let K be the associated tangent vector (K - K = 0).

Let us consider the motion on the symmetry plane y = 0.
If y=0 and y =0 initially, the third equation of Egs. (3) ensures
that the motion will be confined on the symmetry plane, since the
derivatives of the metric functions with respect to y, i.e., fy, wy
and yy, all vanish at y =0, so that y =0 too. Eqs. (3) thus re-
duce to
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where metric functions are meant to be evaluated at y =0.
2.2. Neutrino oscillations

The phase associated with neutrinos of different mass eigen-
state is given by [15]

B

D = / Pu(k) dx*, (6)
A

if the neutrino with 4-momentum P = mU is produced at a
spacetime point A and detected at B.

The standard assumptions usually applied to evaluate the phase
are the following (see, e.g., Ref. [33]): a massless trajectory is
assumed, which means that the neutrino travels along a null
geodesic path; the mass eigenstates are taken to be the energy
eigenstates, with a common energy E; the ultrarelativistic approx-
imation my <« E is performed throughout, so that all quantities are
evaluated up to first order in the ratio my/E.

The integral is carried out over a null path, so that Eq. (6) can
be also written as

AB
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where K is a null vector tangent to the photon path. The com-
ponents of P and K are thus obtained from Eq. (5) by setting
m =m, and pu = 0 respectively. In the case of equatorial motion
the argument of the integral (7) depends on the coordinate x only,
so that the integration over the affine parameter A can be switched
over x by
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where K* = dx/dA. By applying the relativistic condition my <« E
we find

D~

ka/ xe? 9
Ny T ®)

to first order in the expansion parameter my/E < 1, where E is the
energy for a massless neutrino and b = L/E the impact parameter.
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