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Multidimensional scaling is applied in order to visualize an analogue of the small-world effect implied
by edges having different displacement velocities in transportation networks. Our findings are illustrated
for two real-world systems, namely the London urban network (streets and underground) and the US
highway network enhanced by some of the main US airlines routes. We also show that the travel time
in these two networks is drastically changed by attacks targeting the edges with large displacement
velocities.
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1. Introduction

Long-range connections and their effects in complex networks
have been extensively studied in the last years. The most impor-
tant effect became known as small-world effect, as it provides an
elegant explanation for Milgram’s experiment of the six degrees
of separation [1]. The first model capable of explaining the small-
world effect was reported by Duncan J. Watts and Steven Strogatz
[2] in 1998. Several applications to real-world problems have been
reported. The small-world model of Watts and Strogatz reveals
how the inclusion of just a few long-range connections into regular
networks can drastically decrease the network’s diameter (i.e. the
number of edges between two nodes). Provided that the displace-
ments are done along the shortest paths of the network, it is well
known (e.g. [3]) that in a d-dimensional regular network, where
the nodes establish connections constrained by adjacency rules,
the average traveling time is of order τ ∝ N1/d/v . Here, v corre-
sponds to the number of edges crossed per unit of time. By adding
a small number of long-range connections, it has been observed
that the average travel time decreases as τ ∝ log(N)/v . Although
this approach is correct for many purely topological systems, such
as protein–protein [4], WWW [5], citations [6] and collaborations
[2] networks, it cannot be directly extended to several real-world
systems, where the Euclidean space and the displacement velocity
play a crucial rule in determining the transportation properties of
the network [7–11]. In such systems, the velocity is defined as the
Euclidean length traveled per unit of time.
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The above properties have already been explored in several pre-
vious works. For example, Hayashi and Matsukubo [11] showed
how the addition of long-range connections can improve the ro-
bustness of some embedded network models against intentional
attacks. Recently, G. Li et al. [12] also studied the effects of long-
range connections on regular lattices. The authors considered the
addition of long-range links between nodes i and j with probabil-
ity pi, j ∝ r−γ

i, j , where ri, j is the Manhattan distance between the
nodes and γ > 0. Their results indicate that optimal transportation
occurs when γ = d + 1 for a d-dimensional system, independently
of the navigation strategy adopted.

In order to illustrate the importance of spatial constraints on
the transport properties, we show in Fig. 1 a simple embedded
network with three short-range connections and one long-range
connection. If we want to reach node 4 after departing from 1, we
can choose two different shortest paths (i.e. paths with the mini-
mum total Euclidean length): {1,2,3,4} or {1,4}. Observe that the
first path only uses short-range connections, while the second op-
tion uses a long-range link. It is clear that if the displacement ve-
locity is fixed for both types of connections, there is no advantage
in using any of the options. However, as we will see, a substan-
tially different result can be obtained when we consider different
displacement velocities.

Typically, real transportation networks are generalizations of
the simple situations discussed above. Real networks are embed-
ded in three-dimensional spaces and display regular properties,
in which each node is connected to a small number of neighbors
through short-range connections. This strategy reduces the build-
ing cost of real-world structures, whose costs are proportional to
the total length of the system [13]. In addition, the network is en-
hanced by a small number of long-range links that spans the space.
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Fig. 1. Sample network with three short-range connections and one long-range con-
nection (dashed line). If we want to reach the node 4 departing from 1, we can
choose two shortest paths: {1,2,3,4}, which uses only short-range connections and
{1,4}, which uses the long-range connection. From the point of view of the time
spent during travel, there is no difference between the two paths if the displace-
ment velocities are the same along the two types of edges. On the other hand, if
we can move faster in the long-range connection, we should choose the second
path. Note that the connection lengths correspond to actual Euclidean distances in
physical space.

The key point here is to consider that the displacement velocities
through the short-range and long-range connections are different.
While the displacement along the short-range connections occurs
with velocity vs , in long-range connection this velocity is vl = αvs ,
with α > 1.

In the current Letter we study two important real-world sys-
tems characterized by the features described above, i.e. they have
two types of connections with different displacement velocities.
The systems that will be considered are: (a) the network of the
streets of London plus the respective underground system and
commuter trains, and (b) the US highway plus some of the main
US airlines connections. We will use multidimensional scaling in
order to visualize the effect of the long-range edges and will then
quantify the importance of these connections on the transportation
properties as well.

This Letter is organized as follow: we start by presenting and
discussing the networks used here. Next, multidimensional scaling
is used to visualize the effects of the network topology. We then
simulate attacks in order to quantify the importance of the long-
range connections as compared to the short-range counterparts.
Finally, we present the main conclusions and prospects for further
investigation.

2. Description of the data

In this section we show how both networks used in this Letter
were constructed.

2.1. London Streets Network (LSN)

The central region of London, corresponding to about 13 km ×
13 km, was mapped into a network where each node corresponds
to the confluence of two or more streets. Also, the underground
system and commuter trains of London respective to that same
region was then appended into this network. Each underground
station was replaced by its closest node from the respective street
network. For this network (henceforth called LSN), we have α ≈ 3
and 3% of the total number of edges correspond to long-range con-
nections. The final network contains 5963 nodes and 8378 edges
(8126 from streets and 252 from underground) corresponding to
an average degree of 2.81. Fig. 2(a) shows the final version of
this network, where the long-range connections are depicted in
blue. Observe that, for this network, the long-range connections
are 5 times longer than short-range connections, in the aver-
age.

2.2. US Highways Network (USHN)

The second network (USHN) considered in this Letter was built
using the American highway system enhanced by twenty of the
most important airlines connections. The importance of each air-
line connection was quantified according to the number of passen-
gers that it transports. In this network, the confluences of two or
more highways were mapped into nodes. Two nodes are linked if
a highway connects them. Moreover, the extremities of the airline
connections were replaced by the closest nodes from the high-
way system. For this network, we have α ≈ 6 and the fraction of
edges corresponding to long-range connections is about 3%, again.
The final version of this network is shown in Fig. 2(c). It contains
428 nodes and 674 edges (655 from highways and 19 from air-
lines), corresponding to an average degree of 3.15. It is interesting
to observe that almost all long-range connection tend to link the
west coast to the east coast. On average, we found that the length
of the long-range connections are 40 times longer than those of
the short-range connections.

3. Visualizing the effect of the long-range connections

We applied the classical multidimensional scaling method [14,
15] on the networks in order to visualize the effect of the long-
range connections. This technique provides a powerful way for
obtaining the nodes positions from a dissimilarity matrix, or the
so-called distance cartograms [16,17]. We denote by τi, j the dis-
similarity between the nodes i and j. In these networks, this dis-
similarity corresponds to the minimum traveling time to reach the
destination node j after departing from i. In order to evaluate the
value of τi, j each edge (i, j) of the network received a weight cor-
responding to τi, j = �i, j/vi, j , where �i, j is the Euclidean distance
between i and j and vi, j = vs if (i, j) is a short-range connection
or vi, j = αvs if (i, j) is a long-range connection. The dissimilar-
ity matrix is defined as the N × N symmetric matrix T, which has
elements τi, j . Now, the following matrix is obtained from T:

B = −1

2
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UUT

)
T′

(
I − 1

N
UUT

)
, (1)

where U is a vector N ×1 whose elements are all equal to one, I is
the N × N identity matrix and T′ is a matrix whose elements are
equal to the square of the elements of T, i.e. τ ′

i, j = τ 2
i, j . The eigen-

values of B are then identified, and only those which are larger
than zero are considered in order to build the next matrix, E. Then,
these n � N eigenvalues are sorted in decreasing order, yielding
the sequence λ1 > λ2 > · · · > λn > 0. The respective eigenvectors
are stacked as columns of a matrix E with dimension N × n. The
coordinates of the N nodes can now be obtained, up to a rigid
body transformation, as:
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· · · · · · · · · · · ·
0 0 · · · √
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⎞
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The dimension of the final coordinates is approximately given by
the number of positive eigenvalues, n. The results are shown in
Figs. 2(b) and 2(d) for LSN and USHN, respectively. It is clear from
these figures that the peripheral regions of London were brought
close to the central region. For the USHN case – Fig. 2(d), one can
observe a folding effect bringing together the west and the east
coast over the US map. In both figures, the edge lengths are ap-
proximately proportional to the traveling time required to cross
that respective edge. Observe that an element τi, j can represent
anything that provides some joint information about the nodes i
and j. In the special case when this information is given by the 2D
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