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We study relations between the ground-state energy of a quantum graph Hamiltonian with attractive δ

coupling at the vertices and the graph geometry. We derive a necessary and sufficient condition under
which the energy increases with the increase of graph edge lengths. We show that this is always the case
if the graph has no branchings while both energy increase and decrease are possible for graphs with a
more complicated topology.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Quantum graphs proved themselves to be a class of systems of-
fering numerous problems interesting from both the physical and
mathematical point of view; we refer to the proceedings volume
[1] for an extensive bibliography. In this Letter we address the
question about relations between the ground-state energy of such
a Hamiltonian and geometric properties of the underlying graph,
in particular, the lengths of its edges.

A motivation to study this kind of problem is twofold. On the
physics side it is, of course, the importance of the ground state as
the one to which the system tends to relax when it loses energy
due to an interaction with the environment. Since quantum graphs
model various real physical systems it is natural to ask about the
geometric configurations which are energetically the most favor-
able. At the same time, mathematically the problem represents
a natural extension of the usual spectral-geometry studies of the
relations between spectral properties of differential operators and
geometry of the manifolds supporting them.

We restrict here our attention to graphs with a finite number
of edges, some of which may be semi-infinite, and an attractive
δ coupling at the vertices, assuming that the motion at the graph
edges away from the vertices is free. Such systems have always
a nontrivial negative spectrum with a well-defined ground state;
we will ask how the corresponding eigenvalue depends on the
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finite-edge lengths. First we analyze the case of n attractive δ inter-
actions on the line which can be regarded as a simple chain graph.
We will prove that the ground-state energy moves up with increas-
ing distances between the δ potentials in two different ways, by
means of a Neumann bracketing and by using the well-known ex-
plicit form of such a Hamiltonian resolvent.

After that we will pass to general quantum graphs of the de-
scribed class. We will show that in such a case the dependence
on the edge length is more complicated and its sign is uniquely
determined by the form of the ground-state eigenfunction on the
particular edge. As long as the graph is a chain we have the
monotonicity described above. On the other hand, we will give an
example showing that once the graph has at least one nontriv-
ial branching, i.e., a vertex of degree exceeding two, it is possible
that the ground-state energy decreases with the increasing edge
lengths.

Before proceeding further let us note that relations between
quantum graph eigenvalues and edge lengths have been discussed
also in other contexts. In particular, Friedlander [2] derived a lower
bound on higher eigenvalues for finite graphs in terms of the total
graph size. On the other hand, Berkolaiko and Kuchment [3] stud-
ied general relations between the point spectrum and the set of
edge lengths and coupling constants.

2. A warm-up: δδδ interactions on a line

Consider first a particle on a line with a finite number of δ-
interactions the Hamiltonian of which can be formally written as
− d2

dx2 +∑n
j=1 α jδ(x − y j). Following [4] we denote this operator as

−�α,Y where α := {α1, . . . ,αn} and Y := {y1, . . . , yn}. We suppose
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that all the points y j are mutually distinct and the interactions
are attractive, α j < 0, j = 1, . . . ,n. Under this assumption the con-
tinuous spectrum of −�α,Y covers the positive halfline and the
discrete spectrum in the negative part of the axis is non-empty, in
particular, there is a ground-state eigenvalue λ0 < 0 with a strictly
positive eigenfunction ψ0

1; we ask how does λ0 depend on the
geometry of the set Y .

One can conjecture that the ground-state energy decreases
when the point interactions are closer to each other. First we prove
this claim under an additional assumption.

Proposition 2.1. Consider sets Y1, Y2 of the same cardinality such
that y j,1 < y j,2 < · · · < y j,n, j = 1,2. Let there be an i such that
y2,l = y1,l for l = 1, . . . , i and y2,l = y1,l + η for l = i + 1, . . . ,n.
Suppose further the ground-state eigenfunction of the −�α,Y1 satisfies
ψ ′

0(y1,i+) < 0 and ψ ′
0(y1,i+1−) > 0. Then we have minσ(−�α,Y1 ) �

minσ(−�α,Y2 ) for any η > 0.

Proof. Since ψ0 is positive and satisfies ψ ′′
0 = −λ0ψ0 between the

point interaction sites, the function is convex; by the assumption
there is then a point x0 ∈ (y1,i, y1,i+1) such that ψ ′

0(x0) = 0. Con-
sider now the operator −�̃α,Y1 which acts as −�α,Y1 with the
additional splitting2 Neumann condition at the point x0; it is ob-
vious that the two operators have the same ground state. Such
a Neumann condition separates the two halflines, hence −�̃α,Y1

can be written as −�̃l
α,Y1

⊕ −�̃r
α,Y1

. Consider now the operator

−�̂α,Y2 := −�̃l
α,Y1

⊕ −�N ⊕ −�̃r
α,Y1

where the added operator is

the Neumann Laplacian on L2(0, η); it is clear that the latter does
not contribute to the negative spectrum, hence minσ(−�̂α,Y2 ) =
minσ(−�̃α,Y1 ). Furthermore, −�̂α,Y2 is obviously unitarily equiv-
alent to −�α,Y2 with added splitting Neumann conditions at the
points x = x0, x0 + η, hence the sought result follows from Neu-
mann bracketing [5, Section XIII.15]. �

It is not difficult to see that the assumption about the derivative
signs is satisfied if −αi,−αi+1 are large enough or, which is the
same by scaling, the distance yi+1 − yi is large enough. However,
we can make a stronger claim without imposing restrictions on the
ground-state eigenfunction derivatives.

Theorem 2.2. Suppose again that #Y1 = #Y2 and α j < 0 for all j.
Let further y1,i − y1, j � y2,i − y2, j hold for all i, j and y1,i − y1, j <

y2,i − y2, j for at least one pair of i, j, then we have minσ(−�α,Y1 ) <

minσ(−�α,Y2 ).

Proof. We employ Krein’s formula [4, Section II.2.1] which makes
it possible to reduce the spectral problem at energy k2 to solution
of the secular equation, det Γα,Y (k) = 0, where

[
Γα,Y (k)

]
j j′ = −[

α−1
j δ j j′ + Gk(y j − y j′)

]N
j, j′=1

and Gk(y j − y j′ ) = i
2k eik|y j−y j′ | is the free resolvent kernel. Writing

conventionally k = iκ with κ > 0, we have to investigate the lowest
eigenvalue of Γα,Y (iκ) which is, of course, given by

μ0(α, Y ;κ) = min|c|=1

(
c,Γα,Y (iκ)c

)

1 See [4, Theorem II.2.1.3], and also Theorem 3.2 below.
2 Adding a Neumann condition is understood here in the way standard in bracket-

ing arguments [5, Section XIII.15]. Nevertheless, since Neumann condition is some-
times used as a synonym for Kirchhoff coupling in quantum graphs, we say “split-
ting” to stress that the functions from the domain of −�̃α,Y1 are in general discon-
tinuous at x0.

with the minimum taken over all c ∈ C
n with |c| = 1. It is easy

to see that μ0(α, Y ;κ) > 0 for all κ large enough; the ground-
state energy −κ2 corresponds to the highest value of κ such that
μ0(α, Y ;κ) = 0. Since [Γα,Y (iκ)]i j = −δi jα

−1
i − 1

2κ e−κ�i j , where
�i j = |yi − y j|, the quantity to be minimized is explicitly

(
c,Γα,Y (iκ)c

) =
n∑

i=1

|ci|2
(

− 1

αi
− 1

2κ

)
− 2

n∑
i=1

i−1∑
j=1

Re c̄ic j
e−κ�i j

2κ
.

Next we notice that the eigenfunction corresponding to the ground
state, i.e., c for which the minimum is reached can be cho-
sen strictly positive; we write symbolically c > 0 meaning ci >

0, i = 1, . . . ,n. This follows from the fact that the semigroup
{e−tΓα,Y (iκ): t � 0} is positivity improving, as a consequence of
strict negativity of the off-diagonal elements of Γα,Y (iκ) — cf. [5,
Section XIII.12 and Problem XIII.97]. This means, in particular, that
we have

μ0(α, Y ;κ) = min|c|=1, c>0

(
c,Γα,Y (iκ)c

)
.

Take now two configurations, (α, Y ) and (α, Ỹ ) such that �i j � �̃i j
and the inequality is strict for at least one pair (i, j). For any
fixed c > 0 we then have (c,Γα,Y (iκ)c) < (c,Γα,Ỹ (iκ)c), and con-
sequently, taking a minimum over all such c’s we get

μ0(α, Y ;κ) < μ0(α, Ỹ ;κ)

for any κ > 0 with the obvious consequence for the ground state
of −�α,Y ; the sharp inequality in the last formula holds due to
the fact that there is a c for which the minimum is attained. �
Remark 2.3. The argument used above can be extended to other
situation. Take for instance, point interactions on a loop, in other
words, on a finite interval with periodic boundary conditions. The
corresponding Green’s function is

Giκ (x, y) = coshκ(� − |x − y|)
2κ sinhκ�

, |x − y| � 1

2
�,

where � is the length of the loop. Writing the corresponding secu-
lar equation we find that expanding the loop without reducing the
distances between the neighboring point interaction sites means
moving the ground-state energy up.

3. Quantum graphs: setting the problem

After this preliminary let us pass to a more general situation
when the particle lives on a graph and the attractive point interac-
tion represent couplings at the graph vertices. Consider a graph
Γ consisting of a set of vertices V = {X j: j ∈ I}, a set of fi-
nite edges L = {L jn: ( j,n) ∈ I L ⊂ I × I} where L jn is the edge3

connecting the vertices X j and Xn , and a set of infinite edges
L∞ = {Lk∞: k ∈ I C } attached to them. We regard it as a configu-
ration space of a quantum system with the Hilbert space

H =
⊕
j∈I L

L2([0, l j]
) ⊕

⊕
k∈I C

L2([0,∞)
)
.

the elements of which can be written as columns ψ = {(ψ jn: L jn ∈
L}, {ψk∞: Lk∞ ∈ L∞})T . We consider the dynamics governed by
a Hamiltonian which acts as −d2/dx2 on each edge. In order to
make it a self-adjoint operator, in general boundary conditions

3 Without loss of generality we may suppose that each pair of vertices is con-
nected by a single edge; in the opposite case we add extra vertices of degree two
to the “superfluous” edges and impose Kirchhoff conditions there.
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