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In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure
of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at
the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary
conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface
stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect
on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when
the characteristic size reduces to nanometers.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Propagation of elastic waves in artificial periodic composites,
termed as phononic crystals (PCs), has received increasing research
attention in recent years [1–6]. The existence of band gaps, i.e.
frequency ranges within which propagation of elastic waves is
completely forbidden inside the crystals, has been predicted the-
oretically [1–4] and demonstrated experimentally [5,6]. PCs have
also been found to posses some peculiar properties under certain
conditions, e.g. negative refraction and sound focusing [7,8], sub-
wavelength imaging [9–12] and collimation [13–17]. Therefore,
various applications of PCs have been expected, for example, sound
insulators, filters and waveguides. The identification of band gaps
and frequency regimes where the aforementioned unique proper-
ties may occur relies on the band structure calculation results. Up
to now, several methods have been proposed for calculating the
elastic wave band structure of PCs, including the plane wave ex-
pansion (PWE) method [1,3,4], the finite difference time domain
(FDTD) method [18,19], and the multiple scattering theory (MST)
method [20–22].

Recently, the possibility of fabricating and measuring micro
and nano PCs [23,24] have been demonstrated and the integra-
tion of devices based on PCs into communication and sensing sys-
tems has been anticipated in pace with the development of nano-
technologies. It has long been known that interface/surface stress
may have significant effect on the mechanical and other physi-
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cal behaviors of smallsized materials and structures due to the
high interface/surface-to-volume ratio [25–27]. Gurtin and Mur-
doch [28] and Gurtin et al. [29] developed the interface/surface
elasticity theory to describe the interface/surface stress effect in
the continuum framework and the interface/surface elasticity the-
ory has been demonstrated to be capable of well reproducing the
results of direct atomic simulations [27]. The interface/surface elas-
ticity theory has been employed to study the size-dependent ef-
fective elastic constants of solids containing nano-inhomogeneities
[30]. Some authors have investigated and demonstrated the inter-
face/surface stress effect on the wave propagation in solids. Gurtin
and Murdoch [31] investigated the effect of surface stress on plane
wave propagation in homogeneous, isotropic half spaces. Wang
[32] and Wang et al. [33,34] studied the diffraction of plane elastic
waves by nanosized inhomogeneities and demonstrated the con-
siderable importance of the interface/surface stress effect.

To date, little attention has been paid to the interface/surface
stress effect on the wave propagation in PCs, which is of im-
portance for designing and characterizing miniaturized devices
based on PCs. In this Letter, we extend the MST by incorporat-
ing the interface/surface elasticity theory and investigate the in-
terface/surface stress effect on the elastic wave band structure of
two-dimensional PCs.

2. Basic equations of interface/surface elasticity

According to the interface/surface elasticity theory, the inter-
face/surface is viewed as a negligibly thin elastic continuum which
adheres to the bulk materials without slipping. The elastic con-
stants of the interface/surface are different from those of the bulk
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materials. Assume a coherent interface Γ between two different
solids Ω1 and Ω2. The equilibrium equation of the interface Γ

takes the following form [28,30](
σ 1 − σ 2) · n = −∇s · τ (1)

where σ 1 and σ 2 are the stress tensor in solids Ω1 and Ω2, re-
spectively, and n denotes the unit normal vector to the interface
Γ , with positive n being from Ω2 to Ω1. ∇s · τ denotes the inter-
face/surface divergence of the interface/surface stress τ .

For a linear elastically isotropic interface/surface, the constitu-
tive equation reads [27,30,32]

τ = λs
(
trεs)I + 2μsε

s (2)

where λs and μs are the interface/surface elastic moduli, and I is
the second-rank unit tensor in two-dimensional space. εs is the
second-rank tensor of interface/surface strains, which for a coher-
ent interface/surface equals to the tangential strain of the bulk
materials at the interface/surface.

The equilibrium equations, constitutive equations and the
strain-displacement equations in the bulk materials are the same
as those of classical elasticity.

3. MST with interface/surface stress effect taken into account

3.1. Fundamentals of MST

The MST has already been successfully applied to calculating
the band structure of various PCs [20–22] and it features excel-
lent convergence and capability of handling PCs with mixing solid
and fluid components. Compared with the other methods, the MST
explicitly utilizes the boundary conditions at the interface/surface,
and thus offers the potential to conveniently embody the inter-
face/surface stress effect. Based on the interface/surface elasticity,
here we extend the MST and investigate the interface/surface stress
effect on the elastic wave band structure of 2D PCs. To be com-
plete, the fundamentals of the MST are outlined in this section.

Consider two-dimensional PCs consisting of aligned cylindrical
inclusions or pores periodically embedded in a matrix. The time-
harmonic elastic wave equation in linear, isotropic, homogeneous
media reads

(λ + 2μ)∇∇ · u − μ∇ × ∇ × u + ρω2u = 0 (3)

where u is the displacement, λ and μ the Lamé constants, and
ρ the mass density of the medium. In the cylindrical coordinate
system (r, φ, z), the general solution of Eq. (3) is of the following
form [22]

u(r) =
∑
nζ

[
anζ Jnζ (r) + bnζ Hnζ (r)

]
(4)

where Jnζ (r) and Hnζ (r) are defined as [22]

Jn1(r) = ∇[
Jn(αr)einφ

]
Jn2(r) = ∇ × [

z Jn(βr)einφ
]

Jn3(r) = 1

β
∇ × ∇ × [

z Jn(βr)einφ
]

(5)

and

Hn1(r) = ∇[
Hn(αr)einφ

]
Hn2(r) = ∇ × [

zHn(βr)einφ
]

Hn3(r) = 1

β
∇ × ∇ × [

zHn(βr)einφ
]

(6)

where α = ω
√

ρ/(λ + 2μ), β = ω
√

ρ/μ, Jn(x) is the Bessel func-
tion, and Hn(x) is the Hankel function of the first kind. The index
ζ in Eq. (4), running from 1 to 3, represents three wave modes, i.e.
the longitudinal mode (ζ = 1) and the two shear modes (ζ = 2,3).
The first and second term of the right-hand side of Eq. (4) stand
for the incoming and outgoing waves, respectively.

According to the MST, in a multiple scattering system, the in-
cident wave at each scatterer N located at the lattice position
RN ,uinc

N , is equal to the sum of the scattered waves from all the
other scatterers plus the possible external incident wave uinc(0) .
This physical picture can be mathematically expressed as

uinc
N (rN) = uinc(0)(rN) +

∑
M �=N

usc
M(rM) (7)

where rN and rM denote the position of the same spatial point
measured from scatterers N and M , respectively. Using the general
solution in Eq. (4), Eq. (7) can be recast into the following form∑
nζ

aN
nζ Jnζ (rN)

=
∑
n′ζ ′

aN(0)

n′ζ ′ Jn′ζ ′(rN) +
∑

M �=N

∑
n′′ζ ′′

bM
n′′ζ ′′ Hn′′ζ ′′(rM) (8)

The scattered wave by each scatterer can be related to the inci-
dent wave at the same scatterer by the following relation between
the incident field expansion coefficients A = {aN

nζ } and the scat-

tered field expansion coefficients B = {bN
nζ }:

B = TA (9)

where the elastic Mie scattering matrix T = {tnζn′ζ ′ } can be ob-
tained from the boundary conditions at the interface/surface. For
PCs consisting of identical scatterers, T is independent of the lat-
tice position.

The scattered field from scatterer M can be translated to the
incident field at scatterer N by using the following relation [22]

Hnζ (rM) =
∑
n′ζ ′

Gnζn′ζ ′(RM − RN)Jn′ζ ′(rN) (10)

where Gnζn′ζ ′(RM − RN ) is given by

Gnζn′ζ ′(R) =
{

Hn′−n(αR)e−i(n′−n)φR , ζ = ζ ′ = 1

Hn′−n(βR)e−i(n′−n)φR , ζ = ζ ′ = 2,3
(11)

In addition, by using Bloch’s theorem one can relate the expan-
sion coefficients anζ at different lattice positions

aM
nζ = eik·(RM−RN )aN

nζ (12)

where k is the Bloch wave vector. Since the elastic wave band
structure is concerned, the external incident wave in Eq. (8) van-
ishes. Substituting Eqs. (9)–(12) into Eq. (8) yields

∑
n′ζ ′

[ ∑
n′′ζ ′′

tn′′ζ ′′n′ζ ′
∑

M �=N

eik·(RM−RN )Gn′′ζ ′′nζ (RM − RN) − δnn′δζζ ′
]

× aN
n′ζ ′ = 0 (13)

where δ is the Kronecker delta, and thus the elastic wave band
structure of 2D PCs can be obtained by solving the following secu-
lar equation

det

∣∣∣∣∑
n′′ζ ′′

tn′′ζ ′′n′ζ ′ gn′′ζ ′′nζ (k) − δnn′δζζ ′

∣∣∣∣ = 0 (14)
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