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We adopt the Hoffmann–Born–Infeld’s (HBI) double Lagrangian approach in general relativity to find
black holes and investigate the possibility of viable thin-shell wormholes. By virtue of the non-linear
electromagnetic parameter, the matching hypersurfaces of the two regions with two Lagrangians provide
a natural, lower-bound radius for the thin-shell wormholes which provides the main motivation to the
present study. In particular, the stability of thin-shell wormholes supported by normal matter in higher-
dimensional Einstein–HBI–Gauss–Bonnet (EHBIGB) gravity is highlighted.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is a well-known fact by now that non-linear electrodynam-
ics (NED) with various formulations has therapeutic effects on
the divergent results that arise naturally in linear Maxwell elec-
trodynamics. The theory introduced by Born and Infeld (BI) in
1930s [1] constitutes the most prominent member among such
class of viable NED theories. Apart from the healing power of
singularities, however, drawbacks were not completely eliminated
from the theory. One such serious handicap was pointed out by
Born’s co-workers shortly after the introduction of the original BI
theory. This concerns the double-valued dependence of the dis-
placement vector �D(�E) as a function of the electric field �E [2].
That is, for the common value of �E the displacement

−→
D undergoes

a branching which from physical grounds was totally unacceptable.
To overcome this particular problem, Hoffmann and Infeld [2] and
Rosen [3], both published successive papers on this issue. Specifi-
cally, the model Lagrangian proposed by Hoffmann and Infeld (HI)
contained a logarithmic term with remarkable consequences. It
removed, for instance, the singularity that used to arise in the
Cartesian components of the �E . Being unaware of this contribution
by HI, and after almost 70 years, we have rediscovered recently
the ubiquitous logarithmic term of Lagrangian while in attempt to
construct a model of elementary particle in Einstein–NED theory
[4]. In the present study, in addition to the BI and HI’s field theo-
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retic contributions we consider the Gauss–Bonnet (GB) extension
of general relativity. The reason for adding GB theory and con-
sidering EHBIGB theory relies also on the advantages of the GB
parameter: for specific choice of such a parameter we eliminate
the exotic matter. The double-Lagrangian feature of the problem
for two different regions seems to be the pay-off in attaining such
a resolution.

In this Letter we wish to make further use of the Hoffmann–
Born–Infeld (HBI) Lagrangian in general relativity, in constructing
black holes and thin-shell wormholes. This motivation for such
a study relies on the fact that the common boundary radius in
which each Lagrangian is valid makes a natural shell akin for
constructing a thin-shell wormhole. That is, the thin-shell whose
energy–momentum maintains the wormhole can be identified as
the boundary on which the HBI Lagrangians match. Further, the
fact that the shell’s radius lies outside the horizon – a motto for
traversable wormholes – is satisfied, because the NED parameter
can be chosen arbitrary. Our analysis reveals that for the negative
GB parameter (α < 0) thin-shell wormholes supported by normal
matter exists, and they are stable against linear radial perturba-
tions. Due to the intricate structure of the potential function, our
stability analysis is carried out numerically and plots are made in
d = 5.

2. d-dimensional stable, normal matter thin-shell wormhole in
EHBIGB theory

Our action in d-dimensional EHBIGB theory of gravity is given
by (we use c = � = kB = 8πG = 1

4πε◦ = 1)
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S = 1

2

∫
dxd √−g

{
− (d − 2)(d − 1)

3
Λ + R + αLG B + L(F )

}
(1)

with the line element

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2 dΩ2

d−2 (2)

where LG B = Rμνγ δ Rμνγ δ − 4Rμν Rμν + R2, α is the GB parameter
and dΩ2

d−2 is the line element of the (d − 2)-dimensional sphere.
In what follows we shall label the spherical coordinates by θi for
1 � i � d − 2. Here we have

L(F ) =
{

L−, r �
√

qb,

L+, r �
√

qb,
(3)

in which

L+ = − 2

b2
(k + αε+ − lnε+) (4)

and

L− = − 2

b2

(
k + αε− − ln |ε−|) (5)

with q = electric charge, b = Born–Infeld (BI) parameter, α = 1, k =
ln 2 − 2 and ε± = 1 ± √

1 + 2b2 F . Our notation is such that, F =
Fμν F μν and the electric field 2-form is given by

F = Er dt ∧ dr. (6)

Having L+ for r4 > q2b2 and L− for r4 < q2b2 imposes (L+ =
L−)r4=q2b2 which is satisfied, as it should. The nonlinear Maxwell
equation

d
(

L F
�F

) = 0,(
L F = ∂L

∂ F

)
(7)

in d dimensions leads to the radial electric field

Er = qr(d−2)

(q2b2 + r2(d−2))
. (8)

At r4 = q2b2, one gets Er = 1
2b which is the maximum value that

Er may take. Variation of the action (1) yields the field equations
as

Gμ
ν + (d − 2)(d − 1)

6
Λδμ

ν = Tμ
ν, (9)

where the energy–momentum tensor is given by

Tμ
ν = 1

2

(
Lδμ

ν − 4L F Fμλ F νλ
)
, (10)

which clearly gives Tt
t = Tr

r = ( 1
2 L − L F F ), stating Gt

t = Gr
r and

Tθi
θi = 1

2 L. Our ansatz metric function can be expressed more con-
veniently by

f (r) = 1 − r2 H(r), (11)

in which H(r) is a function to be determined [5]. One should no-
tice that, our choice of gtt = −(grr)

−1 is a direct result of Gt
t = Gr

r

up to a constant coefficient, which is chosen to be one. The Ein-
stein tensor components are found to be

Gt
t = Gr

r = − (d − 2)

2rd−2

[
rd−1(H + α̃H2)]′, (12)

Gθi
θi = − (d − 2)

2rd−3

[
rd−1(H + α̃H2)]′′, (13)

where α̃ = (d − 3)(d − 4)α. Here we use the definition of the
energy–momentum tensor (10) and the Lagrangian given by (1)
to get

T t
t = T r

r = − 1

b2
ln

(
1 + b2q2

r2(d−2)

)
, (14)

and

Tθi
θi = − 1

b2
ln

(
1 + b2q2

r2(d−2)

)
+ 2q2

b2q2 + r2(d−2)
. (15)

Having the closed form of energy–momentum tensor enable us
to investigate the energy conditions. The weak energy condition
(WEC) reads

ρ � 0, ρ + pi � 0, (16)

in which ρ = −T t
t and pi = T i

i and i = 1, . . . ,d − 1. It is not diffi-
cult to see that WEC is satisfied. The strong energy condition (SEC)
states that

ρ +
d−1∑
i=1

pi � 0, ρ + pi � 0, (17)

which after substitution we get

2b2q2

b2q2 + r2(d−2)
− ln

(
1 + b2q2

r2(d−2)

)
� 0. (18)

This condition is not satisfied for arbitrary values of the parame-

ters, rather, for the case b2q2

r2(d−2) � 0.254 it is satisfied. Finally the
dominant energy condition (DEC) is given by

peff = 1

d − 1

d−1∑
i=1

pi � 0. (19)

This equation, after substitution, reads

d − 2

d − 1

(
2b2q2

b2q2 + r2(d−2)

)
− ln

(
1 + b2q2

r2(d−2)

)
� 0, (20)

which is not satisfied in all regions, and depends on dimensions
(the range of validity is even smaller than SEC). The tt and rr com-
ponents of the Einstein equations, upon substitution of (14), read

− (d − 2)

2rd−2

[
rd−1(H + α̃H2)]′ + (d − 2)(d − 1)

6
Λ

= − 1

b2
ln

(
1 + b2q2

r2(d−2)

)
, (21)

whose integral for H(r) yields

H(r) + α̃H(r)2 = Λ

3
+ m

rd−1

+ 2

b2(d − 2)rd−1

∫
rd−2 ln

(
1 + b2q2

r2(d−2)

)
dr, (22)

in which m is the ADM mass in the Reissner–Nordstrom (RN) case.
As a result, we obtain the metric function to be

f±(r) = 1 + r2

2α̃

{
1 ±

√
1 + 4α̃Θ

}
(23)

where

Θ = Λ

3
+ m

rd−1
+ 2

b2(d − 2)rd−1

∫
rd−2 ln

(
1 + b2q2

r2(d−2)

)
dr.

(24)
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