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We use the dielectric-response formalism to evaluate the induced density of charge carriers in supported
graphene due to an external moving charged particle in terms of its velocity and distance from graphene
for several equilibrium charge carrier densities due to graphene doping. We show that, when the particle
speed exceeds a threshold value, an oscillatory wake effect develops in the induced charge density trailing
the particle. Strong effects are observed in the wake pattern due to finite size of the graphene–substrate
gap, as well as due to strong coupling effects, and plasmon damping of graphene’s π electrons.
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1. Introduction

Interactions of energetic charged particles with graphene-based
materials have been studied extensively for some time, e.g., in
investigations of the directional effects in ion and molecule im-
plantation into highly oriented pyrolytic graphite (HOPG) [1,2], ion
channelling through HOPG [3], and secondary electron emission
from HOPG induced by fast ions [4] and clusters [5], as well as
in ion channelling through carbon nanotubes [6–9], and in the ex-
citation of plasmons in a single-walled carbon nanotube by a fast
point charge moving near its surface at an arbitrary angle of inci-
dence [10].

On the other hand, interactions of electrons with graphene have
been recently studied both at high electron energies in the context
of electron energy loss spectroscopy (EELS) in scanning transmis-
sion electron microscope (STEM) [11,12] and at low electron en-
ergies within the high-resolution reflection EELS (HREELS) studies
of epitaxial graphene [13–16]. HREELS is particularly suitable for
probing the low-energy excitations in graphene, which are domi-
nated by the linear energy dispersions of its π -electron conduction
and valence bands that meet at the so-called Dirac point, giv-
ing rise to the picture of “massless” Dirac fermions (MDF) [17].
Depending on the level of doping of graphene with charge carri-
ers, which determines the position of its Fermi level relative to
the Dirac point, both intra-band and inter-band single-particle ex-
citations (SPEs) can play significant roles, in addition to plasmon
excitations in graphene.
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The ability to screen an external electric field is an important
property of any nanostructured material. Depending on the speed
of the external charge, the screening mechanism changes its char-
acter dramatically, going from a Debye-like screened potential of
a static charge to a dynamic regime characterized by an oscilla-
tory potential contained in a cone trailing a moving charge, which
is commonly known as the wake effect [18]. It is characterized
by the onset of oscillations in the polarization of the medium,
which arise from resonances due to excitations of collective modes
in the medium and often provide an effective mechanism of en-
ergy loss for an external charge. While the wake effect in three-
dimensional (3D) plasmas has been known for more than fifty
years [19], its current significance encompasses diverse new areas,
such as dust-crystal formation in complex plasmas [20], Coulomb
explosion of large clusters, such as C60, in thin solid foils [21],
channelling of fast ions through nano-capillaries in solids [22] and
carbon nanotubes [6,18], as well as interactions of charged parti-
cles with one [23] and two [24] layers of a 2D quantum electron
gas (2DQEG), supported thin metal films [25], and with magne-
tized two-component plasmas [26,27].

In our previous publications [28,29], we have used a hydrody-
namic model to study the wake effect due to fast charged particles
that move at speeds in excess of the Bohr’s speed over a sup-
ported 2D electron gas (2DEG) characterized by a single energy
band with parabolic dispersion. Our results showed that, when the
particle speed matches the phase velocity of the quasi-acoustic π
plasmon, the induced number density shows the usual wake os-
cillations. In addition, we have presented calculations of the total
electric potential in the 2DEG plane, induced by a fast point charge
moving parallel to it. Those results indicated a possibility of real-
izing the so-called wake riding effect in 2D [18,30], whereby other
charged particles may be captured in a potential well, or their state
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manipulated in the presence of the wake potential induced by a
fast external charge.

In this work, we focus on the wake effect in a supported single-
layer graphene under the gating conditions due to slow charged
particles that move parallel to graphene. This configuration may be
of interest for grazing scattering of slow ions from graphene [31],
or for HREELS studies of graphene that involve reflection of elec-
trons with energies on the order of several tens of eVs [13–16].
Since such interactions are expected to be dominated by the low-
energy excitations of graphene’s π electrons, it is convenient to
use the dielectric-response theory for surfaces and layered struc-
tures [32], incorporating the polarization function for graphene
that is available within the random phase approximation (RPA)
based on a linear approximation for the π electron bands [33–35].
We have discussed the applicability of the latter approximation in
Ref. [36], where we showed that it should work well for particles
moving at sufficiently large distances and at speeds on the order
of Bohr’s speed, or less.

Graphene usually appears in the experimental situations as
supported by a substrate [37,38]. Surprisingly, most theoretical
models of graphene’s dynamic response assume a zero gap be-
tween the graphene and a substrate [33,34], even though the size
of such gap is expected to be on the order of the distance be-
tween graphene layers in graphite, or even larger, as documented
experimentally [38]. In our previous publications we have evalu-
ated the stopping and dynamic image forces acting on slow ions by
means of a semiclassical kinetic (Vlasov) equation for graphene’s π
electrons [39] and by using the dielectric response formalism for
graphene’s π electron bands in the RPA model [36,40], and we
pointed to a strong need to take into account the finite size of the
graphene–substrate gap.

Although we consider the RPA dielectric function to be a ba-
sic, parameter-free model that provides an adequate description of
both the inter-band and intra-band SPEs, as well as plasmon exci-
tations, of graphene’s π electrons, the model nevertheless has its
shortcomings. For example, it ignores the local-field effects (LFE)
due to electron–electron correlations [41,42] and assigns an in-
finitely long lifetime to the electron excitations. Only one of these
shortcomings can be qualitatively corrected in the RPA dielectric
function at a time, e.g. by using either the Hubbard approximation
(HA) for the LFE in the static limit [43] or by introducing finite
relaxation time, or decay (damping) rate, γ , using Mermin’s pro-
cedure [36,40,44,45].

In this Letter, we present for the first time the oscillatory wake
effect in the charged carrier density in a supported graphene, in-
duced by a slowly moving charged projectile, taking into account
the influence of: the equilibrium charge carrier density n due to
doping of graphene, the distance z0 and the speed v of the pro-
jectile, the size of the graphene–substrate gap h, and the damping
rate γ of elementary excitations in graphene.

The equilibrium charge carrier density is a particularly impor-
tant parameter because it determines the Fermi wavenumber of
graphene’s π -electrons, kF = √

πn (we shall assume n > 0, i.e.,
graphene doped by electrons, without loss of generality), and the
corresponding Fermi energy, E F = h̄kF v F , where v F ≈ c/300 is the
Fermi speed of the linearized π bands, and c is the speed of light
in free space. In this work, we shall consider a range of equilibrium
charge carrier densities from 1011 cm−2 to 1013 cm−2. In addition,
we shall make explicit comparison of our results for the wake ef-
fect in graphene with those arising in a 2DEG with a parabolic
energy band parameterized by the effective mass m∗ = h̄kF /v F . In
this way, both the single-layer graphene and the “massive” 2DEG
share the same form of the plasmon dispersion relation in the long
wavelength limit, given by ωp(k) = √

2πne2k/m∗ = √
2e2 v F kF k/h̄.

The Letter is organized as follows. After outlining the theoretical
model in the following section, we shall present and discuss the

results for the induced number density per unit area of electrons
in graphene for a range of the relevant parameters. Concluding re-
marks will be given in the last section.

Note that we use Gaussian electrostatic units and denote the
charge of a proton by e > 0.

2. Basic theory

We use a Cartesian coordinate system with coordinates {�R, z}
and assume that graphene is located in the plane z = 0, where
�R = {x, y} is position in the plane and z distance from it. A sub-
strate with dielectric constant εs is assumed to occupy the region
z � −h underneath the graphene, whereas the region z > −h is
assumed to be vacuum or air. By performing the Fourier trans-
form with respect to coordinates in the xy plane, �R → �k, and time,
t → ω, we can express the induced number density per unit area
of electrons in graphene, ngr , in terms of the local value of the total
electric potential, Φtot , evaluated at z = 0, in the form

ngr(�k,ω) = eχ(k,ω)Φtot(�k, z,ω)
∣∣

z=0 (1)

where χ(k,ω) is the polarization function within RPA for non-

interacting π electrons in free graphene with k =
√

k2
x + k2

y .

Taking into account the effects of substrate, one may express
Φtot(�k, z,ω)|z=0 in terms of the Fourier transform of the potential
Φext(�R, z, t) due to external charge distribution with the density
ρext(�R, z, t) as

Φtot(�k, z,ω)
∣∣

z=0=
1

ε(k,ω)
Φext(�k, z,ω)

∣∣
z=0 (2)

where ε(k,ω) is the dielectric function of the combined graphene–
substrate system, given by

ε(k,ω) = ε0(k) + V (k)χ(k,ω) (3)

with V (k) = 2πe2/k being the Coulomb interaction in 2D and

ε0(k) ≡ 1

1 − εs−1
εs+1 e−2kh

(4)

the background dielectric function, which quantifies the effects of
the substrate. Note that ε0(k) takes the values in the range be-
tween 1 and (εs + 1)/2, characterizing, respectively, the case of
a free-standing graphene (h → ∞) and the case of a zero gap
(h = 0) between graphene and a substrate.

For the dielectric response of graphene in Eq. (3), we use the
polarization function for graphene’s π electron excitations in the
RPA, χ(k,ω), which is described in detail in Refs. [33,34,36]. In or-
der to estimate the effects of strong coupling, we go beyond the
RPA regime by using the approach outlined in Ref. [46] for in-
teractions of slow charged particles with 2DEG, whence the RPA
polarization function χ(k,ω) is to be replaced with

χLFE(k,ω) = χ(k,ω)

1 − G(k)V (k)χ(k,ω)
. (5)

For the sake of simplicity, we use static limit of the LFE correc-
tion function, G(k), which is given in the Hubbard approximation
(HA) by G(k) = k

4
√

k2+k2
F

[43,47]. On the other hand, the finite

lifetime of the excitation modes of charge carriers in graphene
is treated by introducing a finite damping rate, γ , in the RPA
polarization function through Mermin’s procedure [36,40,44,45],
whereby one replaces χ(k,ω) with

χM(k,ω,γ ) = χ(k,ω + iγ )

1 − iγ
ω+iγ

[
1 − χ(k,ω+iγ )

χs(k)

] (6)
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