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We present a novel approach to data analysis using fractional order calculus. In principle the approach 
can be applied to any distribution and shows remarkable improvement even if the parameters of a 
particular distribution have been optimised to achieve the best fit to data. The method is demonstrated 
for two important distributions that are used in data analysis, namely, power-law and exponential 
distributions. We show that the approach can allow composite distributions to be constructed for 
improved accuracy and robustness in the characterisation of data sets.
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1. Introduction

Fractional calculus has been around from the time when Leib-
niz and Newton invented conventional calculus. The word ‘frac-
tional’ may be a misnomer but has been retained for historical 
reasons that date back to 1695 when for the first time Leibniz and 
L’Hopital pondered what the significance of the derivative of or-
der one-half might mean. A more appropriate definition would be 
‘generalised’ calculus instead of ‘fractional’ calculus. Conventional 
calculus deals with integer order differentiation and integration 
while fractional calculus deals with differentiation and integration 
of arbitrary order that includes real numbers and complex num-
bers. Indeed, conventional calculus is a special limit of fractional 
calculus when the order of differentiation and/or integration is an 
integer. Fractional order calculus had been sidelined as a mathe-
matical tool by researchers mainly because of its increased com-
plexity compared to conventional calculus. Another reason is that 
until recently is was not very clear as to what the physical signifi-
cance of non-integer calculus is. For example, consider the position 
of a particle s(t) as a function of time for an initial velocity u and 
acceleration a:

s(t) = ut + 1

2
at2 (1)

The first order derivative with respect to time gives the velocity 
while the second order derivative gives the acceleration:

v(t) ≡ ds(t)

dt
= u + at and
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a(t) ≡ d2s(t)

dt2
= a (2)

respectively. These equations are well known in classical mechan-
ics and they are related via the use of conventional calculus. An 
interesting question arises: what is the physical interpretation of 
the half derivative of s(t): d0.5s(t)/dt0.5? Does the half derivative of 
(1) describe the particle’s position, velocity or a mixture of both? 
Likewise does the half derivative of the particle’s velocity describe 
its velocity, acceleration or a mixture of both?

Integer order derivatives describe how a function varies at a 
point while the non-integer derivative describes the behaviour of 
the function at a point but also at surrounding points or ‘regions’. 
If no derivative is taken then the particle’s state is described by the 
position (1). The first order derivative gives ‘precise’ information 
about the particle’s velocity. However by taking the half-derivative 
of the position of the particle d0.5s(t)/dt0.5 we gain knowledge of 
both the position and velocity, a kind of mixture or fuzziness be-
tween the two states or roughly 50% knowledge about its position 
and 50% knowledge about its velocity. In the same way, the same 
conclusions can be drawn for the case of velocity and acceleration 
in (2). This is demonstrated in Fig. 1 which shows the differential 
variation for integer and non-integer order α. For α = 0, the dis-
tance covered by the particle as a function of time is shown for ini-
tial velocity u = 10 ms−1 and acceleration a = 4 ms−2. The integer 
order derivative α = 1 gives the velocity, i.e., v(t) = s(1)(t) while 
the second (integer) order α = 2 represents the particle’s acceler-
ation, i.e., a(t) = s(2)(t). The non-integer order α = 1/2 describes 
the particle motion as a ‘mixture’ made up from information on 
its position and its velocity roughly in equal measure. In a similar 
way α = 3/2 represents the particle in a state that describes both 
its velocity and acceleration. It should be evident that any order α
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Fig. 1. The variation of the particle position s(α)(t) for fractional and integer order 
derivatives α.

can be selected to describe the asymptotic behaviour of the curves 
representing the motion of the particle. This aspect is generalisable 
and can be applied to any type of function or curve. Thus, in gen-
eral terms, if the ‘velocity’ curve represents an arbitrary optimal fit 
to a particular data set for example, it is possible to change the 
characteristics of such a curve asymptotically using the fractional 
order α. A choice of α = 0.95 will represent a curve that fits the 
optimal curve (the velocity curve here) from above while α = 1.1
will fit the optimal curve from below. As α → 1, the first order in-
teger derivative, the fractional order curve and the optimal curve 
are equal. It is worth pointing out that the same principle holds if 
we were to use integration (fractional and integer) instead.

We extend these ideas and develop a new approach that applies 
to any type of distribution in principle while improving the ability 
of a particular distribution to mathematically fit a given data set. 
The technique also allows the straightforward construction of com-
posite distributions by ‘merging’ the fractional version of unrelated 
conventional distributions. In order to demonstrate the concept 
further we have used fractional calculus to derive fractional-order 
power-law and exponential distributions for fitting experimental 
data. We show that the idea of using fractional-order distributions 
allows the fitting of data more accurately even after the parame-
ters in these distributions have already been optimised using the 
maximum likelihood method [1–3] and no further accuracy is pos-
sible under conventional analysis.

2. Fractional-order power and exponential distributions

In conventional calculus differentiation (or integration) is per-
formed to integer order, e.g. dn

dxn f (x) where n ∈ N . In the fractional 
calculus approach we examine here, the fractional order of differ-
entiation or integration α can be real or complex, i.e., α ∈ R , α ∈ C . 
Fractional order integration can be performed using [4,5]:

a D−α
t f (t) = 1

Γ (α)

t∫
a

f (x)(t − x)α−1dx (3)

The fractional differentiation of a function f (x) is obtained by us-
ing the so-called Riemann–Liouville integro-differential equation 
[4,5]:

a Dα
t f (t) = 1

Γ (n − α)

dn

dtn

t∫
a

f (x)

(t − x)α−n+1
dx (4)

where a and t are the integration limits. Notice that, contrary 
to conventional calculus, in order to obtain the fractional order 

Fig. 2. Subfigure (A): Distributions for power law (6) and fractional-power law (8)
for α = 0.96 and α = 1.05. As α changes in the interval [0.96, 1.05] the asymptotic 
behaviour of the fractional distribution changes accordingly. Subfigure (B): Distribu-
tions for exponential law (9) and fractional-exponential law (11) for α = 0.97 and 
α = 1.10. Once again as α changes in the interval [0.97, 1.10] the asymptotic be-
haviour of the fractional distribution also changes. For α = 1, the power-exponential 
distributions and fractional power-exponential distributions are exact. Dots repre-
sent data from [6].

derivative of a function one must use integration as can be seen 
in (4). The integer order derivative is chosen such that n = �α�, 
i.e., the ceiling function of α. For example if α = 1/2 then n = 1. 
Both expressions (3) and (4) make use of the gamma-function,

Γ (t) =
∞∫

0

e−xxt−1dx (5)

with Re(z) > 0. Furthermore we note the properties Γ (z + 1) =
zΓ (z) and Γ (n) = (n − 1)! The operator a D−α

t f (t) represents frac-
tional integration of the function f (t). This can also be represented 
by the notation d−α f (t)/dt−α . Changing the sign of α allows us 
to obtain the fractional differentiation a Dα

t f (t) which can also be 
represented by the notation dα f (t)/dtα .

Use of the Riemann–Liouville equation is made, i.e. (4), to 
derive fractional distributions in order to fit the experimental 
data found in [6,7] while comparing to the optimised conven-
tional power and exponential distributions. The data pertains 
to neurological experiments and is: [xi, yi] = [(1, 0.94), (3, 0.77),

(6, 0.40), (9, 0.26), (12, 0.24), (18, 0.16)] where the y-values rep-
resent memory retention vs time in seconds (x-axis). All plot axes 
presented in this Letter concern memory retention vs time but 
labelling has been omitted for brevity. The conventional power 
distribution we will compare with has the form:

pp. = ω1x−ω2 (6)

The parameters ω1 and ω2 are optimised using the maximum like-
lihood estimator (MLE) approach and we will be using the same 
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