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We begin by giving correct expressions for the short-time action following the work Makri–Miller. We use
these estimates to derive an accurate expression modulo �t2 for the quantum propagator and we show
that the quantum potential is negligible modulo �t2 for a point source, thus justifying an unfortunately
largely ignored observation of Holland made twenty years ago. We finally prove that this implies that the
quantum motion is classical for very short times.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

In exploring the WKB limit of quantum theory, Bohm [2] was
the first to notice that although one starts with all the ambiguities
about the nature of a quantum system, the first order approxima-
tion fits the ordinary classical ontology. By that we mean that the
real part of the Schrödinger equation under polar decomposition
of the wave function becomes the classical Hamilton–Jacobi equa-
tion in the limit where terms involving h̄ are neglected. In contrast
to this approach, in this Letter we show that the classical trajec-
tories arise from a short-time quantum propagator when terms of
O (�t2) can be neglected. This fact was actually already observed
by Holland some twenty years ago: In page 269 of his book [6]
infinitesimal time intervals are considered whose sequence con-
structs a finite path. It is shown that along each segment the
motion is classical (negligible quantum potential), and that it fol-
lows that the quantum path may be decomposed into a sequence
of segments along each of which the classical action is a mini-
mum. The novel contribution of the present Letter is an improved
proof of Holland’s result using an improved version of the propa-
gator due to Makri and Miller [9,10]. (See also de Gosson [3] for a
further discussion.)

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are credited.

* Corresponding author. Tel.: +43 0 6767877995.
E-mail addresses: maurice.degosson@gmail.com, maurice.de.gosson@univie.ac.at
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Now it is well known that explicit approximate expressions
for the short-time action already play an essential role in various
aspects of quantum mechanics (for instance the Feynman path in-
tegral, or semi-classical mechanics), and so does the associated Van
Vleck determinant. Unfortunately, as already observed by Makri
and Miller [9,10], these expressions, while giving the correct re-
sults for long time behavior, are not accurate enough to allow us to
explore the short-time propagator rigorously. It is actually worse,
the literature seems to be dominated by formulas which Makri and
Miller show are wrong even to the first order of approximation!

These results have enabled us to provide precise estimates
for the short-time Bohmian quantum trajectories for an initially
sharply located particle. We will see that these trajectories are
classical to the second order in time, due to the vanishing of the
quantum potential for small time intervals.

In this Letter we sidestep the philosophical and ontological de-
bate around the “reality” of Bohm’s trajectories and rather focus
on the mathematical issues.

2. Bohmian trajectories

Consider a time-dependent Hamiltonian function

H(x, p, t) =
n∑

j=1

p2
j

2m j
+ U (x, t) (1)

and the corresponding quantum operator

Ĥ(x,−ih̄∇x, t) =
n∑

j=1

−h̄2

2m j

∂2

∂x2
j

+ U (x, t). (2)
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The associated Schrödinger equation is

ih̄
∂Ψ

∂t
= Ĥ(x,−ih̄∇x, t)Ψ, Ψ (x,0) = Ψ0(x). (3)

Let us write Ψ in polar form ReiS/h̄; here R = R(x, t) � 0 and S =
S(x, t) are real functions. On inserting ReiS/h̄ into Schrödinger’s
equation and separating real and imaginary parts, one sees that
the functions R and S satisfy, at the points (x, t) where R(x, t) > 0,
the coupled system of non-linear partial differential equations

∂ S

∂t
+

n∑
j=1

1

2m j

(
∂ S

∂x j

)2

+ U (x, t) −
n∑

j=1

h̄2

2m j R

∂2 R

∂x2
j

= 0, (4)

∂ R2

∂t
+

n∑
j=1

1

m j

∂

∂x j

(
R2 ∂ S

∂x j

)
= 0. (5)

The crucial step now consists in recognizing the first equation as a
Hamilton–Jacobi equation, and the second as a continuity equation.
In fact, introducing the quantum potential

Q Ψ = −
n∑

j=1

h̄2

2m j R

∂2 R

∂x2
j

(6)

(Bohm and Hiley [2]) and the velocity field

vΨ (x, t) =
(

1

m1

∂ S

∂x1
, . . . ,

1

mn

∂ S

∂xn

)
(7)

Eqs. (4) and (5) become

∂ S

∂t
+ H(x,∇x S, t) + Q Ψ (x, t) = 0, (8)

∂ρ

∂t
+ div

(
ρvΨ

) = 0, ρ = R2. (9)

The main postulate of the Bohmian theory of motion is that parti-
cles follow quantum trajectories, and that these trajectories are the
solutions of the differential equations

ẋΨ
j = h̄

m j
Im

1

Ψ

∂Ψ

∂x j
. (10)

The phase space interpretation is that the Bohmian trajectories
are determined by the equations

ẋΨ
j = 1

m j
pΨ

j , ṗΨ
j = − ∂U

∂x j

(
xΨ , t

) − ∂ Q Ψ

∂x j

(
xΨ , t

)
. (11)

It is straightforward to check that these are just Hamilton’s equa-
tions for the Hamiltonian function

HΨ (x, p, t) =
n∑

j=1

p2
j

2m j
+ U (x, t) + Q Ψ (x, t) (12)

which can be viewed as a perturbation of the original Hamilto-
nian H by the quantum potential Q Ψ (see Holland [7,8] for a
detailed study of quantum trajectories in the context of Hamilto-
nian mechanics).

The Bohmian equations of motion are a priori only defined
when R �= 0 (that is, outside the nodes of the wave function); this
will be the case in our constructions since for sufficiently small
times this condition will be satisfied by continuity if we assume
that it is case at the initial time.

An important feature of the quantum trajectories defined above
is that they cannot cross; thus there will be no conjugate points
like those that complicate the usual Hamiltonian dynamics.

3. The short-time propagator

The solution Ψ of Schrödinger’s equation (3) can be written

Ψ (x, t) =
∫

K (x, x0; t)Ψ0(x0)dx0 (13)

where the kernel K is the quantum propagator:

K (x, x0; t) = 〈x|exp(−i Ĥt/h̄)|x0〉. (14)

Schrödinger’s equation (3) is then equivalent to

ih̄
∂ K

∂t
= Ĥ(x,−ih̄∇x, t)K , K (x, x0;0) = δ(x − x0) (15)

where δ is the Dirac distribution. Physically this equation describes
an isotropic source of point-like particle emanating from the point
x0 at initial time t0 = 0. We want to find an asymptotic formula for
K for short time intervals �t . Referring to the usual literature (see,
e.g., Schulman [11]), such approximations are given by expressions
of the type

K (x, x0;�t) =
(

1

2π ih̄

)n/2√
ρ(x, x0;�t)exp

(
i

h̄
S(x, x0;�t)

)
where S(x, x0;�t) is the action along the classical trajectory from
x0 to x in time �t and

ρ(x, x0;�t) = det

(
−∂2 S(x, x0;�t)

∂x j∂xk

)
1� j,k�n

is the corresponding Van Vleck determinant. We will need precise
short-time behavior of the action. In this regard Makri and Miller
[9,10] have shown that the asymptotic expression for the generat-
ing function is given by

S(x, x0;�t) =
n∑

j=1

m j

2�t
(x j − x0)

2 − Ũ (x, x0)�t + O
(
�t2) (16)

where Ũ (x, x0,0) is the average value of the potential over the
straight line joining x0 at time t0 to x at time t with constant
velocity:

Ũ (x, x0) =
1∫

0

U
(
λx + (1 − λ)x0,0

)
dλ. (17)

For instance when

H(x, p) = 1

2m

(
p2 + m2ω2x2)

is the one-dimensional harmonic oscillator formula (16) yields the
correct expansion

S(x, x0; t) = m

2�t
(x − x0)

2 − mω2

6

(
x2 + xx0 + x2

0

)
�t + O

(
�t2),

(18)

the latter can of course be deduced directly from the exact value

S(x, x0; t, t0) = mω

2 sinω�t

((
x2 + x2

0

)
cosω�t − 2xx0

)
(19)

by expanding sinω�t and cosω�t for �t → 0.
Introducing the following notation,

S̃(x, x0;�t) =
n∑

j=1

m j
(x j − x0)

2

2�t
− Ũ (x, x0)�t, (20)
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