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We report an exact analytical solution of so-called positron diffusion trapping model. This model have
been widely used for the treatment of the experimental data for defect profiling of the adjoin surface
layer using the variable energy positron (VEP) beam technique. However, up to now this model could be
treated only numerically with so-called VEPFIT program. The explicit form of the solutions is obtained
for the realistic cases when defect profile is described by a discreet step-like function and continuous
exponential-like function. Our solutions allow to derive the analytical expressions for typical positron
annihilation characteristics including the positron lifetime spectrum. Latter quantity could be measured
using the pulsed, slow positron beam. Our analytical results are in good coincidence with both the VEPFIT
numerics and experimental data. The presented solutions are easily generalizable for defect profiles of
other shapes and can be well used for much more precise treatment of above experimental data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Defect depth profiling near the surface is an important appli-
cation of the positron annihilation spectroscopy. For this purpose,
the conventional techniques based on the isotope positron source
have been successfully applied, in which case the defect distribu-
tion extended up to the depth of hundreds micrometers is possible
to measure [1]. The detection of the near-surface defect distribu-
tion (up to the micrometer or less depths) is also possible, however
with a slow positron beam. This technique, in particular, is suitable
to study the metals and semiconductors with their surfaces being
implanted with different ions, [2,3]. For efficient depth profiling,
the positron data analysis should be extended beyond the com-
monly used simple two-state trapping model. Even in the above
conventional techniques positron implantation profile should be
taken into account [1]. This is because emitted energetic positrons
exhibit the energy distribution which finally leads to a positron
implantation profile. It can happen, that the total depth of the de-
fects distribution correlates with that for implantation profile. For
the efficient treatment of the data obtained from the slow positron
beam measurements, not only the initial implantation profile, but
also the thermalized positrons diffusion should be considered. This
is taken into account in the positron diffusion trapping model
(DTM).

E-mail addresses: stef@uni.opole.pl (V.A. Stephanovich), jdryzek@gmail.com
(J. Dryzek).

The DTM is an extended version of the trapping model, where
only annihilation and trapping rates are introduced. Namely, they
are included into the set of rate equations which describe the time
evolution of positron populations in different states. No positron
dynamics is considered in the trapping model. On the contrary, the
DTM accounts for the positrons thermal motions prior to annihila-
tion and after implantation. The epithermal motion is also possible
to introduce. These motions are represented in DTM as certain dif-
fusion processes. In this case, the implantation profile is included
as an initial condition for the corresponding time-dependent dif-
fusion equation. The solution of the rate equations is necessary
to obtain the time evolution of the positron fractions at different
states. This permits to deduce the measurable positron annihila-
tion characteristics (PACh) like the lineshape S-parameter of the
Doppler-broadened annihilation line, mean positron lifetime and
positron lifetime spectrum.

The development of the variable and pulsed slow positron
beam techniques, which allows measuring the positron lifetime
spectrum nearby and at the surface require the solution of DTM
equations. Several approaches have been applied for this pur-
pose. The one-dimensional diffusion equation including both an-
nihilation in the sample interior (the bulk annihilation) and the
surface trapping have been considered by Frieze et al. [4]. To
solve the corresponding diffusion equation, the authors [4] used
Fourier transformation technique. Britton [5], used Green’s function
method for solution of the diffusion equation assuming the per-
fect homogeneous defects-free solid. In Ref. [5], the approximate
forms for positron populations at the surface and in the bulk have
been derived. The final results have been obtained numerically.
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The author [5] have also considered the effects of epithermal
positrons reaching the surface as well as internal reflection of ther-
mal positrons. Kögel [6] has elaborated the DTM in a solid with
inhomogeneous defects distribution. However, the explicit solu-
tions in Ref. [6] have been obtained only for the standard trapping
model with homogeneous defect distribution. The exact solution
of the DTM for homogeneous, defect free sample as well as that
with uniformly distributed open volume defects was made possible
using time domain Laplace transformation and a Green’s function
method to solve resulting coordinate equation [7]. In this case, the
PACh were expressed in the closed analytical form as the functions
of the DTM parameters. It is interesting to note, that the solu-
tion [7] predicts that the positron lifetime spectrum in a pulsed
beam experiment cannot be expressed as a simple sum of expo-
nential functions similar to the standard trapping model. We note
also that the pulsed beam technique, which allows to obtain the
positron lifetime spectra as the function of its energy, is not com-
pletely operational due to the design difficulties.

The beams, where only the positron energy can be varied, i.e.,
the variable energy positron beam (VEP), are much more popular.
In this case, the annihilation lineshape parameter is measured as
a function of positron energy. To solve the DTM for that case, only
the steady-state diffusion equations solution is necessary. In this
solution, the corresponding time dependence is integrated from
zero to infinity. This case is much simpler as it does not require the
inversion of Laplace transform and allows considering the inhomo-
geneous case where defect concentration varies with the depth.
This situation is the most interesting since it delivers adequate
description of many surface physics problems. However, even in
that case the DTM has been solved only numerically. Aers et al. [8,
9] proposed a numerical algorithm for defect profiling using vari-
able energy positron where defect concentration can vary with the
depth like a step function. The drift of positrons in an external
electric field has been included similarly. Van Veen et al. [10] pre-
sented the VEPFIT program which realizes the numerical approach
to the DTM solution for the materials with layered structure. The
program has frequently been used for treatment of the data ob-
tained in the variable energy positron beam. This is because this
program contains the procedure which allows to fit the differ-
ent model parameters to the experimental data. Unfortunately, this
program cannot be used for the pulsed beam technique for evalu-
ation of the measured positron lifetime spectra.

In the present Letter, we report an exact analytical solution
of the DTM for the case when a sample contains defects with
inhomogeneous distribution. Applying the Laplace transformation
in time domain, we construct the Green’s function of the time-
dependent diffusion equation assuming that the defect depth pro-
file is expressed by either the step function or a selected continu-
ous function. Our formalism permits to deduce the time evolution
of positron fractions at different states and from this to obtain the
PACh, including the positron lifetime spectrum. This was not pos-
sible until now with previously known DTM solutions.

2. The formalism

2.1. Statement of the problem

In our consideration, a sample is a semi-infinite medium situ-
ated at positive semi-axis 0 � x < ∞, Fig. 1. Point x = 0 plays a
role of the medium surface, where the energetic positrons enter
a sample. After a few picoseconds they thermalize and begin to
diffuse. The time of diffusion beginning is considered as the ini-
tial time instant t = 0. The penetration depth dependence of the
initial positron concentration is called the positron implantation
profile [12]; we denote it as u(x, t = 0) ≡ P (x). P (x) is also a func-

Fig. 1. Sample irradiated by slow positrons and three states (considered in the Let-
ter) which can be occupied by them after thermalization (main lower panel). The
positron annihilation occurs and the annihilation radiation is emitted from these
states. The initial positron concentration or positron implantation profile P (x) is
presented in the middle panel. The defect depth profile, described by the C(x) func-
tion and proportional to the trapping rate profile k(x) = μC(x), is reported in the
upper panel.

tion of the incident positrons energy. In our consideration, the total
number of implanted positrons is normalized to unity:

∞∫
0

P (x)dx = 1. (1)

Generally speaking, a sample can contain defects with certain
profile C(x) close to its surface. The defect, like vacancy or their
cluster can trap a positron with a specific trapping rate μ. Thus the
whole defect profile traps positrons at a rate k(x) = μC(x), Fig. 1.
We denote the positron (which can freely diffuse) concentration
in a bulk as u(x, t). We denote the part of the above positrons
trapped at the defects (vacancies) as nv(t). Certain positron frac-
tion nsur(t) can diffuse back to the surface, which is a sink for
thermalized positrons. We assume that the entering positrons can-
not be trapped by the defects and the surface, i.e., nv (t = 0) =
nsur f (t = 0) = 0.

In the DTM model, the concentration u(x, t), obeys the diffusion
equation which incorporates the annihilation rate in the free state
λbulk and spatially dependent trapping rate k(x). This yields

∂u(x, t)

∂t
= D+

∂2u(x, t)

∂x2
− [

λbulk + k(x)
]
u(x, t), (2)

where D+ is a bulk positron diffusion coefficient, 0 � x < ∞. As
the thermalized positrons can be trapped at the surface with the
absorption coefficient α, the solution of Eq. (2) should obey the
radiative boundary condition at the surface:

−D+
∂u(x, t)

∂x

∣∣∣∣
x=0

+ αu(x = 0, t) = 0. (3)

Positrons trapped at the surface can also annihilate with the
rate λsur . This generates one more rate equation for the surface
positron fraction nsur(t):

dnsur f (t)

dt
= αu(x = 0, t) − λsur f nsur f (t). (4)

Finally, the positrons fraction, trapped at the defects in a sample,
obeys the equation:

dnv(t)

dt
=

∞∫
0

k(x)u(x, t)dx − λvnv(t), (5)
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