
Physics Letters A 377 (2013) 2931–2938

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Computational approaches to aspect-ratio-dependent upper bounds
and heat flux in porous medium convection

Baole Wen a,b, Gregory P. Chini a,b,c,∗, Navid Dianati d, Charles R. Doering d,e,f

a Program in Integrated Applied Mathematics, University of New Hampshire, Durham, NH 03824, USA
b Center for Fluid Physics, University of New Hampshire, Durham, NH 03824, USA
c Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA
d Department of Physics, University of Michigan, Ann Arbor, MI 48109-1043, USA
e Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
f Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109-1043, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 November 2012
Received in revised form 19 July 2013
Accepted 5 September 2013
Available online 12 September 2013
Communicated by A.P. Fordy

Keywords:
Porous medium convection
Heat flux
Upper bound theory
Euler–Lagrange equations
Low-dimensional modeling

Direct numerical simulation (DNS) has shown that Rayleigh–Bénard convection in a fluid-saturated
porous medium self-organizes into narrowly spaced plumes at (ostensibly) asymptotically high values
of the Rayleigh number Ra. In this Letter a combination of DNS and upper bound theory is used to
investigate the dependence of the Nusselt number Nu on the domain aspect ratio L at large Ra. A novel
algorithm is introduced to solve the optimization problems arising from the upper bound analysis,
allowing for the best available bounds to be extended up to Ra ≈ 2.65 × 104. The dependence of the
bounds on L(Ra) is explored and a “minimal flow unit” is identified.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thermal convection and other buoyancy-driven flows are fun-
damental processes in a variety of natural systems and techno-
logical applications. In particular, free thermosolutal convection
in fluid-saturated porous media is a key environmental process
that impacts, e.g., oil recovery, geothermal energy extraction, and
groundwater flow [1,2]. Indeed, there has been significant re-
newed interest in dissolution-driven convection in porous layers
owing to the potential impact of this process on carbon dioxide
storage in terrestrial aquifers. In addition to these geoscientific
applications, porous medium convection also plays an important
role in fibrous insulation, the design of compact heat exchangers,
and other engineering applications. Moreover, as a paradigm for
forced–dissipative infinite-dimensional nonlinear dynamical sys-
tems, buoyancy-driven convection in porous media displays much
(though not all) of the rich dynamics of Rayleigh–Bénard convec-
tion in a pure fluid layer, including a hierarchy of instabilities and
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bifurcations, pattern formation, and spatiotemporally chaotic dy-
namics (if not “true” fluid dynamical turbulence).

In this study we explore the dynamics of porous medium
convection using the two-dimensional (2D) Darcy–Oberbeck–Bous-
sinesq equations in the infinite Darcy–Prandtl number limit. This
mathematical model combines Darcy’s law for incompressible flow
in a fluid-saturated porous medium and buoyancy forces incorpo-
rated through the Boussinesq approximation together with a time-
dependent advection–diffusion equation for the temperature field
(see Section 2). The sole nonlinearity arises from temperature ad-
vection, and consequently this system is somewhat simpler than
the full Oberbeck–Boussinesq equations. One crucial phenomeno-
logical distinction between Rayleigh–Bénard convection of a pure
fluid and that occurring in a fluid-saturated porous layer is the
observed mean spacing between adjacent rising and falling ther-
mal plumes, which decreases with increasing Rayleigh number Ra
in porous medium but not in classical Rayleigh–Bénard convection
[3–5]. Indeed, for porous medium convection, linear stability analy-
sis of the purely conducting state reveals that the horizontal wave-
length of the smallest unstable mode scales as Ra−1/2 while that of
the fastest-growing disturbance decreases as Ra−1/4. Remarkably,
recent direct numerical simulation (DNS) by Hewitt et al. [6] not
only shows that the mean inter-plume spacing decreases markedly
with Ra, scaling approximately as Ra−2/5, but also that the flow
actually becomes more organized in the interior (i.e. away from
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the upper and lower thermal boundary layers) as Ra is increased.
A complementary numerical and matched asymptotic investigation
of steady cellular solutions in porous medium convection [7] also
confirms that those with the highest heat transport decrease in
lateral scale – specifically as Ra−1/2, just slightly larger than the
smallest horizontal scale capable of sustaining convection. Thus all
these investigations confirm the trend toward compression of hor-
izontal scales, but the exact Ra scaling and physical mechanism
controlling the inter-plume spacing in high-Ra porous medium
convection remain important open questions. Hewitt et al. [8] re-
cently proposed one explanation for the plume spacing based on
a Floquet stability analysis of a strictly columnar vertical exchange
flow (i.e., in the absence of vertical boundaries).

Motivated by these recent studies we address two related but
distinct questions in this Letter. First, is there a smallest do-
main aspect ratio L(Ra) above which the Nusselt number Nu, the
volume- and time-averaged heat flux normalized by the conduc-
tion value, becomes independent of L? This question is analogous
to that of determining the “minimal flow unit” in wall-bounded
shear flow turbulence, the smallest physical domain with hori-
zontally periodic boundary conditions in which (low-dimensional)
turbulence can sustain itself. We address this question empiri-
cally via highly-resolved DNS utilizing a Fourier–Chebyshev pseu-
dospectral algorithm. The second question is, how do optimal up-
per bounds on Nu(Ra) obtained from the rigorous “background”
(sometimes called Constantin–Doering–Hopf) variational formal-
ism depend on L? Upper bounds for statistically stationary con-
vection in a porous layer were first obtained by Busse [9] and
Busse and Joseph [10] using a methodology developed by Howard
for Rayleigh–Bénard convection in a pure fluid layer [11]. Twenty
years later, the background method [12–15] was used to produce
rigorous upper bounds on energy dissipation in shear flows and
on heat transport in convection problems without any statistical
hypotheses, scaling assumptions, or closure approximations. This
approach is based on Hopf’s method for producing a priori esti-
mates for solutions of the Navier–Stokes equations with inhomo-
geneous boundary conditions [16]. The basic idea is to decompose
the dynamical field into a time-independent background compo-
nent carrying the inhomogeneous boundary conditions plus a non-
linear fluctuation satisfying homogeneous boundary conditions. It
is worth emphasizing that the background field (or, in the case
of Rayleigh–Bénard convection, background temperature profile) is
neither a steady solution of the governing equations nor a hori-
zontal/long-time mean. Ensuring that appropriate test backgrounds
satisfy a certain spectral constraint, which effectively is an en-
ergy stability condition, produces rigorous upper bounds on global
transport properties of the flow whether it is laminar or turbulent.

Following the analysis in Doering and Constantin [17] and Otero
et al. [18], Wen et al. [19] obtained the optimal upper bounds
on Nu in porous medium convection for Ra � 2102 by solving
the full background variational problem using a standard numer-
ical optimization package. However, for Rayleigh numbers greater
than a few thousand this scheme is computationally expensive and
insufficiently robust producing, e.g., numerically-induced small-
scale oscillations in the associated upper bound eigenfunctions. In
this study we propose a new strategy for solving the full back-
ground problem efficiently and accurately, and thereby extend the
best available bounds on the heat transport in porous medium
convection up to Ra ≈ 2.65 × 104. This new computational ap-
proach should be widely applicable to other systems to which the
background formalism can be applied (e.g. shear flows [20]). The
numerical algorithm is also crucial for the implementation of a
novel, fully a priori reduced-order modeling strategy proposed by
Chini et al. [21], which exploits a spectral expansion in the upper
bound functional basis. In Section 2 we outline this new numerical
scheme after first recording the mathematical problem formula-

tion. Both DNS and upper bound computations are described and
compared in Section 3, and our conclusions are presented in Sec-
tion 4.

2. Problem formation and computational methodology

We investigate the heat transport in porous medium convec-
tion in a 2D domain (x, z) ∈ [0, L] × [0,1] using the dimension-
less Darcy–Oberbeck–Boussinesq equations in the infinite Darcy–
Prandtl number limit [2]:

∂t T + u · ∇T = �T , ∇ · u = 0,

u + ∇ P = Ra T ez
(⇒ �w = Ra ∂2

x T
)
, (1)

where u(x, z, t) = u(x, z, t)ex + w(x, z, t)ez , P (x, z, t), and T (x, z, t)
are, respectively, the velocity, pressure, and temperature fields sat-
isfying boundary conditions

T |z=0 = 1, T |z=1 = 0, w|z=0,1 = 0 (2)

and L-periodic in x. Two control parameters govern the dynamics
of this system: the domain aspect ratio L and the Rayleigh num-
ber Ra = αg(Tbot − Ttop)K H/(νκ), representing the ratio of driving
to damping forces, where α is the thermal expansion coefficient,
g is the gravitational acceleration, Tbot − Ttop is the temperature
drop across the layer, K is the Darcy permeability coefficient, H
is the layer depth, ν is the kinematic viscosity, and κ is the ther-
mal diffusivity. A primary quantity of interest in convection is the
Nusselt number Nu, the ratio of the heat transport in the presence
of convective motion to the conductive heat transport when u = 0.
In terms of solutions to (1), Nu = 1 + 〈wT 〉 = 〈|∇T |2〉, where 〈·〉
denotes a space–time average. We compute, estimate and bound
Nu using a combination of DNS and generalized energy stability
and upper bound theory, thereby providing the first systematic ex-
ploration of the dependence of Nu on L at large Ra. The DNS is
performed using a standard Fourier–Chebyshev pseudospectral al-
gorithm with semi-implicit time stepping, while the upper bound
computations use a novel two-step algorithm, described below.

In the background analysis, the temperature T (x, z, t) is decom-
posed into a steady background field τ (z) plus an arbitrarily large
fluctuation θ(x, z, t). That is,

T (x, z, t) = τ (z) + θ(x, z, t), (3)

where τ (0) = 1, τ (1) = 0, and θ |z=0,1 = 0. Doering and Constantin
[17] and Otero et al. [18] show that for any τ (z), a ∈ (0,1) and
Ra � 4π2,

Nu � 1 + nu − 1

4a(1 − a)
, (4)

where nu = ∫ 1
0 τ ′(z)2 dz, if and only if the “spectral constraint”

0 � min
ϑ

{
1

L

L∫
0

dx

1∫
0

dz
[
a |∇ϑ |2 + τ ′W ϑ

]}
(5)

holds for all non-trivial test functions ϑ(x, z) satisfying L-periodic
boundary conditions in x and homogeneous boundary conditions
in z, where W (x, z) solves �W = Ra∂2

x ϑ with L-periodic bound-
ary conditions in x and homogeneous boundary conditions in z
as well. For later reference we note that for a = 1 the spectral
constraint is tantamount to enforcing energy stability about the
background profile τ (z) as if it were a steady conduction solution
of the Darcy–Oberbeck–Boussinesq equations with suitable sources
and sinks.

Here we follow the approach used in Wen et al. [19] to opti-
mize the upper bounds over the “balance parameter” a. First we
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