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The standard no slip boundary condition of classical fluid mechanics is no longer valid at the micro-
and nano-scale and should be replaced by a boundary condition that allows some degree of tangential
slip. In the present work, the classical laminar boundary layer equation of the flow away from the origin
past a wedge with the no-slip boundary condition replaced by a nonlinear Navier boundary condition
is revisited. This boundary condition includes an arbitrary index parameter, denoted by n > 0, which
appears in the coefficients of the differential equation to be solved. It is proved corresponding to the
value n = 1

3 , there are exactly three situations for the problem: (i) there is no solution; (ii) there exist
two solutions; (iii) there exist four solutions. Furthermore, the exact analytical solution of the problem is
given in terms of parabolic cylinder functions for further physical interpretations.

© 2013 Elsevier B.V. All rights reserved.

1. Preliminaries and problem formulation

The most theoretical investigations of the boundary layer equations have applied the no-slip boundary condition at the fluid–solid
interface, which is a fundamental notion in fluid mechanics [1–4], and assumes that the fluid velocity component is zero relative to the
solid boundary. This is not true for fluid flows at the micro- or nano-scale and the no-slip boundary condition does not apply but a certain
degree of tangential velocity slip should be replaced [5,6]. Navier [7] proposed a boundary condition which states the component of the
fluid velocity tangential to the boundary walls is proportional to the tangential stress. Afterwards, the linear Navier boundary condition,
by some researchers [8–11], has been extended to a nonlinear form

|u| = l

(∣∣∣∣ ∂u

∂ y

∣∣∣∣
)n

, (1)

where l > 0 is the constant slip length and n > 0 is an arbitrary power parameter. Consider the steady two-dimensional boundary layer
equations

∂u
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+ ∂v

∂ y
= 0, (2)
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subject to the boundary conditions

|u| = l

(∣∣∣∣ ∂u

∂ y

∣∣∣∣
)n

and v = 0 at y = 0, (4)

u ≡ U (x) = axm as y → +∞, (5)

where x and y are the dimensionless Cartesian coordinates measured along the plate and normal to it. u and v are the velocity compo-
nents along the x and y axes. U is a given external inviscid velocity field. The parameters a, m and n are constants. The case a > 0 is of
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main interest when describing flows away from the origin, and a < 0 when the external stream flows towards the origin (for more details
see [12,13]). The more interesting problems arising out of finding a solution of boundary layer equation is when the investigation of the
conditions under which two solutions are similar. Matthews and Hill [10,14] introduced the following similarity transformation, by using
Lie symmetries analysis

η = x− n−1
3n−2 y, (6)

and the stream function f (η) defined by

u
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= 1

a
f ′, x

2n−1
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v
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a

(
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3n − 2
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η f

)
, (7)

with m = n
3n−2 and n �= 3

2 . By these transformations, Eqs. (2) and (3) can be written as

f ′′′ + 2n − 1

3n − 2
f f ′′ − n

3n − 2

(
f ′2 − a2) = 0, (8)

where the prime denotes differentiation with respect to η. The boundary conditions depend on the value of n. For n �= 1
2 , the boundary

conditions are

f = 0 and
∣∣ f ′∣∣ = l

(∣∣ f ′′∣∣)n
at η = 0, (9)

f ′ → a as η → +∞. (10)

A further simplification shows the parameter a could be removed from the governing equation and the second boundary condition (10) if

η and l are multiplied by
√|a| and |a| 3n−2

2 , respectively; and f is multiplied by 1√
a

for a > 0. Therefore, the differential equation of the

flow away from the origin past a wedge is converted to

f ′′′ + 2n − 1

3n − 2
f f ′′ − n

3n − 2

(
f ′2 − 1

) = 0, (11)

with the boundary condition

f (0) = 0,
∣∣ f ′(0)

∣∣ = l
(∣∣ f ′′(0)

∣∣)n
, f ′(+∞) = 1. (12)

In the next sections, we consider the above boundary value problem when n = 1
3 . In this case, Matthews and Hill [10] have shown that

the solutions could be non-unique. We prove corresponding to the mentioned value of n for the problem (11) and (12), three situations
are exactly occurred: (i) there is no solution for some values of the parameter l; (ii) the problem admits dual solutions for a specified
critical value of l which will be determined later; (iii) there exist four solutions for some values of the parameter l. Furthermore, the exact
analytical solution of the problem is given in terms of non-algebraic parabolic cylinder functions for further physical interpretations.

2. The exact analytical solution

Assuming n = 1
3 , the problem (11) and (12) is converted to the following one

f ′′′ + 1

3
f f ′′ + 1

3

(
f ′ 2 − 1

) = 0, (13)

with the boundary condition

f (0) = 0,
∣∣ f ′(0)

∣∣ = l 3
√∣∣ f ′′(0)

∣∣, f ′(+∞) = 1. (14)

One easily sees that (13) admits the first integral

f ′′ + 1

3
f f ′ − 1

3
η = C, (15)

where C is the integral constant. Using the first boundary condition (14), Eq. (15) yields

C = f ′′(0) = γ . (16)

Eq. (15) still admits the integral, then using notation (16), we obtain

f ′ + 1

6
f 2 − 1

6
η2 = γ η + D, (17)

where D is the integral constant. Again using the first boundary condition (14), Eq. (17) gives

D = f ′(0) = α. (18)

Therefore, Eq. (17) is converted to

f ′ + 1

6
f 2 − 1

6
η2 = γ η + α. (19)
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