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Strongly correlated electron system in the magnetic field
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In the range of hole concentrations 0.08 < x < 0.18 the density of states of the two-dimensional t– J
model reveals oscillations with changing the magnetic field. Oscillation frequencies correspond to large
Fermi surfaces. However, the oscillations are modulated with a frequency which is smaller by an order of
magnitude. The modulation is related to van Hove singularities in the Landau subbands, which traverse
the Fermi level with changing the field. The singularities are connected with bending the subbands due
to strong electron correlations. The frequency of the modulation is of the same order of magnitude as
quantum oscillation frequencies in underdoped cuprates.

© 2013 Published by Elsevier B.V.

1. Introduction

Theoretical investigations of systems of strongly correlated elec-
trons in strong magnetic fields were started shortly after the dis-
covery of the high-Tc superconductivity. A number of works was
carried out on small clusters using the exact diagonalization (see,
e.g., [1–3]). It is worth noting that due to the Peierls factor [4], the
translation symmetry of the system is changed [5] – in the mag-
netic field the size of the elementary cell increases significantly.
Clusters with sizes smaller than the size of this supercell violate
the symmetry of the Hamiltonian and, therefore, it is difficult to
extend the obtained results to larger crystals. Another approxima-
tion used for this problem is the mean-field approximation (see,
e.g., [6–8]). The main shortcoming of this approximation is the ne-
glect of the dynamic interaction of fermions with spin excitations.
This interaction defines the fermion dispersion in the underdoped
case.

The investigation of a system with strong electron correlations
in the magnetic field is of interest in connection with the obser-
vation of quantum oscillations in the mixed state of underdoped
yttrium cuprates [9–12]. Based on the Onsager–Lifshitz–Kosevich
theory for metals [13] the observed decreased quantum oscillation
frequencies were interpreted as a manifestation of small Fermi sur-
face pockets [14], despite the fact that this interpretation seems to
be in contradiction with numerous photoemission experiments. To
explain the appearance of these small pockets proposals for various
states with broken translational symmetry were suggested [15–17].
Other theories for explaining the decreased quantum oscillation
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frequency suppose that it is connected with superconducting fluc-
tuations [18,19] or use phenomenology of the marginal Fermi liq-
uid [20].

Crystals, in which the decreased quantum oscillation frequen-
cies were observed, belong to the underdoped region of the
cuprate phase diagram, and, therefore, they are characterized by
strong electron correlations. Theoretically the behavior of such
crystals in strong magnetic fields is poorly known. In this work we
use an approach, which allows us to overcome some limitations
of the approximations used earlier for this problem. The approach
provides a way to consider large enough clusters and moderate
magnetic fields, taking into account the interaction of holes with
spin excitations. We use the exact diagonalization of the kinetic
term of the two-dimensional (2D) t– J model of Cu–O planes. The
term contains the Peierls factor describing the influence of the ho-
mogeneous magnetic field perpendicular to the plane. As known
[5,21,22], the energy spectrum of the kinetic term consists of the
Landau subbands, which substitute the Landau levels in the lat-
tice problem. The influence of strong electron correlations on these
subbands is investigated using the Mori projection operator tech-
nique [23]. It should be noted that due to the complexity of the
problem we were able to calculate only a few terms of the contin-
ued fraction of Green’s function. Therefore, the obtained zero-field
normal-state spectrum does not contain the pseudogap, which ap-
pears in other approaches both in the t– J and Hubbard models
[24–26]. Since in the pseudogap the density of states (DOS) does
not completely vanish, we nevertheless suppose that the used ap-
proximation gives at least qualitatively a correct picture of the
normal-state energy spectrum of the t– J model in the perpendic-
ular magnetic field.

In the used approximation, in the normal state the model has a
large Fermi surface for the hole concentrations x � 0.06. We found
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that in the range 0.08 < x < 0.18 the density of hole states oscil-
lates with frequency for a fixed field B and with 1

B at the Fermi
level. The frequency of these latter oscillations with 1

B conforms
with the large Fermi surface. However, the amplitude of these
high-frequency oscillations is modulated with a frequency which is
smaller by an order of magnitude. The appearance of this modu-
lation is related to van Hove singularities in the Landau subbands,
which traverse the Fermi level with changing B . These van Hove
singularities are connected with bending the Landau subbands due
to the influence of strong correlations. The frequency of the modu-
lation is of the same order of magnitude as the quantum oscillation
frequency observed in underdoped cuprates.

2. Main formulas

One of the main models used for the description of Cu–O planes
of cuprate superconductors is the 2D t– J model. The Hamiltonian
of this model in the magnetic field, which is perpendicular to the
plane, reads

H =
∑
ll′σ

tll′ exp

(
i

e

h̄

l′∫
l

A(r)dr

)
a†

lσ al′σ

+ 1

2

∑
ll′

J ll′
(
sz

l sz
l′ + s+

l s−
l′
) + gμB B

∑
l

sz
l , (1)

where 2D vectors l and l′ label sites of a square plane lattice,
σ = ±1 is the projection of the hole spin, a†

lσ = |l0〉〈lσ | and
alσ = |lσ 〉〈l0| are hole creation and annihilation operators with
the empty |l0〉 and singly occupied |lσ 〉 site states. These three
states form the complete set of hole states for the site l in the t– J
model. The first term of the Hamiltonian, the hole kinetic energy
Hk , contains the hopping matrix element tll′ and the exponential
factor with the Peierls phase [4], in which A(r) is the vector poten-
tial. The second term on the right-hand side of (1) is the exchange
energy of localized spins with the exchange constant J ll′ and the
spin- 1

2 operators sz
l = 1

2

∑
σ σ |lσ 〉〈lσ | and s±

l = |l,±1〉〈l,∓1|. The
last, Zeeman term of the Hamiltonian contains the g-factor g ≈ 2,
the Bohr magneton μB and the magnetic induction B of the ex-
ternal magnetic field. It is supposed that this field is homogeneous
and is only weakly disturbed by internal currents [27].

In the following consideration we shall suppose that only the
nearest neighbor hopping and exchange constants are nonzero,

tll′ = t
∑

a

δl,l′+a, J ll′ = J
∑

a

δl,l′+a,

where a are four vectors connecting nearest neighbor sites. In
cuprate perovskites, the exchange constant J is of the order of
100 meV. Comparing the interaction energy between a spin with
its four neighbors (the second term of the Hamiltonian) and the
energy of the spin in the external field (the third term of the
Hamiltonian) one can ascertain that the former energy is two or-
ders of magnitude larger than the latter even for fields of the order
of 50 T. Therefore, the Zeeman term of the Hamiltonian can be ne-
glected.

In the Landau gauge Al = −Blyx, where l y is the y component
of the site vector l and x is the unit vector along the x axis (the 2D
lattice is located in the xy plane, and the field is directed along the
z axis). Hence the exponential in the kinetic term of the Hamilto-
nian can be written as

eiκal, κa = − e

h̄
Baxy. (2)

In the following discussion we shall restrict our consideration
to the fields satisfying the condition

e

h̄
Ba2 = 2π

n
, (3)

where a = |a| and n is an integer. In this case the kinetic term of
the Hamiltonian defines its translation properties – Hk is invariant
with respect to translations by the lattice period along the x axis
and by n lattice periods along the y axis. To retain this symme-
try we apply the periodic Born–von Karman boundary conditions
to the sample with Nx sites along the x axis and nN y sites along
the y axis. The boundary conditions define the set of allowed wave
vectors with components Kx = 2π

Nxa nx and K y = 2π
nN ya ny with inte-

ger nx and ny . As can be seen from (2) and (3), the momenta κa
coincide with one of the wave vectors in this net. Therefore, in Hk
we can perform the usual Fourier transformation

alσ = 1√
N

∑
K

e−iKlaKσ ,

using the known result 1
N

∑
l eiKl = δK,Q for the wave vector K on

the net. Here N = nNxN y and Q = ( 2π
a νx,

2π
a νy) with integer νx

and νy . After the Fourier transformation the kinetic term acquires
the form

Hk = t
∑
Kaσ

eiKaa†
K−κa,σ

aKσ . (4)

In deriving (4) we took into account that κaa = 0.
It is convenient to split the Brillouin zone into n stripes of the

width 2π
na , which are oriented parallel to the x axis. If we select one

of these stripes, say, the lowest one with −π
a < K y � −π

a + 2π
na ,

and denote wave vectors in it as k, momenta in the entire Brillouin
zone can be described as k + jκ . Here 0 � j � n − 1 and κ = 2π

na y.
In these notations the kinetic energy acquires the form

Hk =
∑
kσ

A†
kσ hkAkσ , (5)

where the summation over k is performed over the selected stripe,

A†
kσ = (

a†
kσ ,a†

k+κ,σ , . . . ,a†
k+(n−1)κ,σ

)
,

hk

t
=

⎛
⎜⎜⎜⎜⎜⎝

q0 e−ikxa 0 . . . eikxa

eikxa q1 e−ikxa . . . 0
0 eikxa q2 . . . 0
...

...
...

. . .
...

e−ikxa 0 . . . eikxa qn−1

⎞
⎟⎟⎟⎟⎟⎠ , (6)

and q j = 2 cos(kya + 2 jπ
n ).

The cyclic Hermitian matrix (6) can be diagonalized by the uni-
tary transformation

ak+ jκ,σ =
n−1∑
m=0

Uk jmαkmσ ,

∑
j′

hk j j′ Uk j′m = EkmUk jm. (7)

This diagonalization gives the dispersion of the Landau subbands
Ekm of uncorrelated carriers in the reduced Brillouin zone, which
coincides with the above-mentioned lowest stripe. The applied
procedure for deriving this dispersion is equivalent to the usually
used approach, in which the magnetic supercell is introduced (see,
e.g., [5,27]). The derivation of the kinetic-energy matrix (6) is sim-
pler in our approach.

Since the kinetic energy defines symmetry properties of the to-
tal Hamiltonian (1), states corresponding to operators αkmσ in (7)
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