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The effect of a thermal reservoir is investigated on a bipartite Gaussian state. We derive a pre-Lindblad
master equation in the non-rotating wave approximation for the system. We then solve the master
equation for a bipartite harmonic oscillator Hamiltonian with entangled initial state. We show that for
strong damping the loss of entanglement is the same as for freely evolving particles. However, if the
damping is small, the entanglement is shown to oscillate and eventually tend to a constant non-zero
value.
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1. Motivation

Entanglement is one of quantum mechanics’ most fascinating
features. It was first described in a celebrated paper by Einstein,
Podolsky and Rosen [1] but owes its name to Schrödinger [2], who
investigated its broader significance for the measurement question.
It has taken on enhanced significance in quantum information.
In this regard, the fragility of entanglement when the system is
subjected to “outside” influence is of even greater importance. In
the current work, we study a bipartite system with a Gaussian
wave function. The state is prepared such that it is entangled, then
shared between two parties who let their respective particle evolve
either freely or interacting via a harmonic potential, but interacting
with its own environment or heat bath. We study the resulting loss
of entanglement between the particles. To do so, we use the pre-
Lindblad non-rotating-wave master equation, [3,4], for which we
outline a simple perturbative derivation starting with the Quantum
Langevin Equation as derived in [5] and using a simple perturba-
tion method as in [6].

The loss of entanglement in a system interacting with an en-
vironment is a well-known phenomenon. It has been studied in
various systems, see e.g. [7–12], where it was found that there
is often a sharp loss of entanglement when compared to a deco-
herence time scale, which has been termed entanglement sudden-
death (E.S.D.). These studies are mainly in the context of qubits
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and the Rotating Wave Approximation (R.W.A.). The R.W.A. is ob-
tained by discarding the fast oscillating terms in the equations
of motion. This approximation works well for weak coupling and
systems with well-spaced energy levels. However, we wish to con-
sider a more general setting and as such this work presents a
study of E.S.D. in a continuous-variables setting using the Non-
Rotating-Wave (N.R.W.) approximation. Note that the master equa-
tion obtained in the N.R.W. approximation is not of the Lindblad
form [13], hence does not in general satisfy the complete positiv-
ity condition. Yet, because the physical limits of the validity of this
property are not well-understood [14], complete positivity alone
does not ensure physicality of the result and one can easily check
for the validity of the density matrix by checking its positive semi-
definiteness. At the same time, the N.R.W. master equation often
works better for systems which are strongly coupled to the en-
vironment [3]. Moreover, the unphysical behavior occurs for low
temperatures only. Caldeira and Leggett [15] have derived a pre-
Lindblad equation using a path-integrals method which is presum-
ably not perturbative. We present a simple perturbative derivation
of the N.R.W. master equation in Appendix A. Diósi [16,17] has
generalist the Caldeira–Leggett derivation to obtain a more com-
plicated equation which is valid for a range of low temperatures.

The choice of a continuous variables setting allows for a more
realistic study of the evolution of the state of the chosen system.
Gaussian states form a class of continuous variable states which
is becoming more and more essential to the field of quantum op-
tics. Indeed, their ease of experimental manipulation makes them
very attractive for quantum information processing [18]. Gaussian
states have also been widely studied analytically in the context of
a system coupled to a heat bath, see e.g. [19–23] to cite but a few.
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In [23] in particular, Vasile et al. study two non-interacting quan-
tum harmonic oscillators, coupled to two independent structured
reservoir, examining various spectral densities for the bath. In [24],
Ficek and Tanás study a system of two qubits coupled to a radia-
tion field where they allow spontaneous decay of the atoms. They
show that the entanglement vanishes but then is revived twice. In
[25], the authors study the emergence of entanglement between
two initially non-entangled qubits due to spontaneous emission,
provided both atoms are initially excited and in the asymmetric
state. Their results suggest that an interaction between two parti-
cles which are initially entangled can delay the vanishing of the
entanglement and even revive it, or create entanglement between
two initially non-entangled particles. We introduce a harmonic po-
tential with frequency ω0 as the interaction between the particles
in our system and examine the dynamics of the entanglement.
We show that entanglement revival can occur depending on the
strength of the damping, i.e. how strong the coupling γ is with re-
spect to the oscillator’s frequency. We show that if the damping is
small (γ < 2

√
2ω0), the entanglement eventually tends towards a

limiting value and does not vanish asymptotically.
In Section 2 we recall the Langevin equation and present the

main steps in the derivation of the master equation. We then re-
call, in Section 3, the formalism used to describe Gaussian states
and the particular measure for entanglement we use. Section 4
considers free evolution, illustrating E.S.D. while Section 5 con-
siders a harmonic interaction. Section 6 contains some concluding
remarks.

2. Framework

In the following we outline very briefly a perturbative deriva-
tion of the N.R.W. Master Equation used here. Further details are in
Appendix A. The derivation is given for one particle but generalizes
easily to the case of two particles, each coupled to its own environ-
ment. We consider a heat bath modeled by independent oscillators
coupled harmonically to the particle [5]. The corresponding Hamil-
tonian has the form

H = p2

2m
+ V (x) + 1

2

∑
j

{ p2
j

m j
+ m jω

2
j (q j − x)2

}
. (1)

We will denote by Hs the Hamiltonian of the system alone, Hs =
p2

2m + V (x). Solving the Heisenberg equations of motion for q j and
then for x yields the Quantum Langevin Equation (see [5])

mẍ +
t∫

−∞
μ
(
t − t′)ẋ

(
t′)dt′ + V ′(x) = ξ(t), (2)

where the dot denotes the derivative with respect to time and the
prime on V that with respect to x. μ(t) and ξ(t) describe the
influence of the bath on the system and are known as the mem-
ory function and the operator-valued random force respectively and
are expressed explicitly in Appendix A. In the case of an Ohmic
heat bath, μ(t) effectively reduces to a constant γ . The Quantum
Langevin Equation for a general observable Y of the small system
(particle) then reads

Ẏ = i

h̄
[Hs, Y ] − i

2h̄

[[x, Y ], ξ(t)
]
+ + iγ

2h̄

[[x, Y ], ẋ(t)
]
+. (3)

This equation is an equation for the system operators (Heisenberg
representation), whereas a Master Equation is an (approximate)
equation acting on the density operator of the quantum system
under study (Schrödinger picture). The adjoint equation provides a
link between the two formalisms:

Tr
{

Y (t)ρ
} = Tr

{
Yρ(t)

}
, (4)

where Tr denotes the trace. Inserting (3), we obtain

ρ̇(t) = − i

h̄

[
Hs,ρ(t)

]− i

2h̄

[[
ξ(t),ρ(t)

]
+, x

]
+ iγ

2h̄

[[
ẋ,ρ(t)

]
+, x

]
. (5)

In order to derive the Master Equation from this adjoint equa-
tion, we assume that the bath is large and hence stays at thermal
equilibrium, and that for t → −∞, the system and the bath are
decoupled so that ρ(t) ∼ ρs(t)ρB . This assumption is critical to the
derivation of any Master Equation. Finally, assuming that the noise
is small we write ξ(t) → εξ(t), where ε is a small parameter. (This
assumption is in fact not essential to the result but allows for a
simpler derivation.) Applying a perturbation method and tracing
over the bath yields the Non-Rotating-Wave Master Equation for
ρs(t) (see Appendix A)

ρ̇s(t) = − i

h̄

[
Hs,ρ(t)

]+ iγ

2h̄

[[
ẋ,ρs(t)

]
+, x

]
− kTγ

h̄2

[[
ρs(t), x

]
, x

]
.

(In position space this equation agrees with (5.10) in [15].) This
equation generalizes in an obvious way to the case of two particles,
each in its own heat bath:

ρ̇(t) = − i

h̄

[
Hs,ρ(t)

]
+ iγ1

2h̄

[[
ẋ1,ρ(t)

]
+, x1

]+ iγ2

2h̄

[[
ẋ2,ρ(t)

]
+, x2

]
− kT1γ1

h̄2

[[
ρ(t), x1

]
, x1

]− kT2γ2

h̄2

[[
ρ(t), x2

]
, x2

]
. (6)

(Here we have omitted the subscript s. γ1 and γ2 are the coupling
parameters for the individual heat baths and T1 and T2 are the
temperatures of the baths.)

3. Gaussian states and the logarithmic negativity

Since the states we will study are Gaussian, we now briefly re-
call the formalism for Gaussian states [26–28].

Gaussian states can be completely specified in terms of their
first and second moments, described respectively by the displace-
ment vector

d j = 〈R j〉ρ = Tr[R jρ]
and the covariance matrix

Γ j,k = 2 Re Tr
[
ρ
(

R j − 〈R j〉ρ
)(

Rk − 〈Rk〉ρ
)]

where R is the vector RT = (q1, p1; . . . ;qn, pn); q j and p j are
the canonical variables of a system of n oscillators with the usual
canonical relations written as [R j, Rk] = ih̄σ jk and σ a real skew-
symmetric 2n × 2n block matrix given by

σ =
n⊕

k=1

(
0 1

−1 0

)
.

The displacement vector is irrelevant in the study of entan-
glement and is taken to be zero in our examples. The covariance
matrix thus reduces to

Γ j,k = 2 Re Tr[ρR j Rk]. (7)

Any real symmetric positive-definite matrix A can be brought
to its Williamson normal form [29] via symplectic transformations,
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