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Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics
of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the
dynamical consequences of the interactions between the local surrounding structure and the particle
orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure.
Modeling this interaction by a particular random walk dynamics on fractal structures we find that the
random walk dimension is not affected while the diffusion constant shows a variety of interesting and
surprising features.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The diffusion of particles driven by thermal noise is a phe-
nomenon widely present in nature. The distance r(t) particles can
move from their starting point in a given time depends on sev-
eral features of the system. If for instance the pathways of the
particles are partly obstructed their progress will be slower. Such
obstructions can be found in a variety of systems and are often
of completely different origins. Typical examples are the slowed-
down diffusion process in biological systems [1–3], or processes in
chemistry [4], or physics [5,6]. Other examples include processes
occurring in porous media like sandstone or in applications like
filter systems [7].

Especially the diffusion in porous materials shows interesting
features depending on the structure of the porosity. Already in
the 1980s, it was found that some porous materials exhibit self-
similarities over a certain range of length scales [8,6,9]. For such
materials the mean squared displacement 〈r2(t)〉 (MSD) shows
anomalous diffusion behavior on certain time scales, i.e. one finds
〈
r2(t)

〉 = Dtγ , (1)

where D is the diffusion coefficient and 0 < γ < 2 is the (anoma-
lous) diffusion exponent. In the case of diffusion in porous ma-
terials subdiffusion is observed with γ < 1. In order to analyze
such behavior further, anomalous diffusion was investigated on
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fractal structures, where the self-similarity has no cut-off at larger
length scales and thus at long time scales the behavior described
by (1) persists. For such processes the exponents γ were then de-
termined to high precision.

The new twist we introduce here is that the diffusing parti-
cles possess an orientation, i.e. they are no longer isotropic ‘point’
particles. Due to the resulting spatial extension (orientation) the
interaction of particles with their surrounding cannot be neglected,
which leads to a changed dynamics. Thus, a new move class has to
be developed in order to capture these features.

Such oriented particles play an important role in a variety of
systems, we just mention as examples electronic dipoles, liquid
crystals [10–13], fibers, and ferromagnetic nanoparticles [14–17].
They are also of great technological importance for instance in liq-
uid crystal displays.

Considering diffusion of such oriented particles in porous ma-
terials (or in biological tissue) immediately raises a number of
questions: How do the oriented particles move within the porous
structure? Does the transport of these particles follow the same
laws as point particles do? If there are differences, are these only
local effects or can they be observed also in the overall behavior?
Do we obtain different exponents for the MSD or do we even get
a new functional dependence for the MSD?

The answers to these questions are crucial for our understand-
ing of diffusion processes in complex structures, as biological sys-
tems, and in their applications, as for instance the design of filter
systems [18].

For the analysis of transport processes of oriented particles dif-
ferent continuum approaches have been used. These are theories
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like the Ericksen–Leslie theory [19,20] or ‘mesoscopic continuum
physics’ [21–23]. These theories introduce either additional fields
or variables to take into account the properties of the material.
In order to embed the orientation of the particles for instance
in the case of the Ericksen–Leslie theory a director field is intro-
duced describing the mean orientation of the liquid crystals. The
mesoscopic continuum physics approach enlarges the domain, i.e.
it describes the properties on a higher-dimensional space – for ex-
ample for liquid crystals on R

3 × S
2.

While it is certainly a highly interesting attempt to include the
self-similarity features of the material into the above approaches
for instance by using fractal derivatives in the continuum equations
[24–28], we here choose a different route based on simulating the
diffusion processes. This approach has been widely used [5,6,29,9,
30–33] to investigate diffusion of ‘point’ like particles within frac-
tals and porous materials.

In the analysis presented here our focus is on capturing the
interaction of the oriented particles with the walls of the porous
material. We envision the oriented particles to be ellipsoids, where
the long axis is a little longer than the size of the smallest pores
and channels. Then, particles with an orientation perpendicular to
a channel will not enter it, and if such a particle is nonetheless in-
side such a channel it will get stuck temporarily. The latter case
can happen, if the orientation of the particle is changed while be-
ing inside a channel (for instance by a thermal fluctuation), or if
the fluid in which the particles are dispersed pushes a particle
into a channel. Note that external fields might allow to influence
(at least the probability of) the orientation. We have implemented
these features by designing a special move class for the random
walks modeling the diffusion process.

In order to capture the self-similarity feature of the porous ma-
terials we performed random walks on special two-dimensional
fractals, the Sierpinski carpets (SC) [34,35,29,9,33,32], a simple and
often used model for porous structures. Below we will first in-
troduce the details of our model, thereafter we describe the data
acquisition followed by the data analysis, and finally the results are
presented.

2. Model

SCs are constructed by recursively applying a generator pattern
to itself. A generator pattern consists of n ×n sub-squares of which
m are labeled black and the rest white. The latter ones are re-
moved and the generator is scaled up such that the sub-squares
have the size of the original generator. Then every scaled-up black
sub-squares is replaced by a copy of the generator. If this iteration
procedure is repeated ad infinitum the limiting object is our fractal
structure where each black square (site) is assigned a tuple (x, y)

of integer coordinates. The fractal dimension df of a SC is given
as df = log m/ logn. It is a measure to characterize the property of
self-similarity of the fractal.

The (typical) generator patterns used in this Letter and the cor-
responding df are given in Fig. 1. Here, all patterns have the size
7 × 7.

Note that sites with only one neighbor are called (narrow) pore
in the following. Furthermore, we introduce the term (narrow)
channel/passage for a group of sites, where each site has only two
neighbors.

Generator A (Fig. 1(a)) is a symmetric pattern in x- and
y-direction where the particles can move in the middle of the
structure independently of their orientation. However, if they want
to leave this area they have to pass through narrow passages
where they are likely to get stuck. Note that in both directions
there is an even number of sticking sites, where particles cannot
move if they have the wrong orientation. Generator B (Fig. 1(b)) is
an asymmetric generator, but close to the structure of generator A,

Fig. 1. These Sierpinski carpet generator patterns are used for the recent investiga-
tions. The patterns A & B have the fractal dimension df = 1.694, whereas pattern
C has df = 1.633. The random walk dimension dw are dA

w = 2.254, dB
w = 2.289, and

dC
w = 2.265.

where the middle part is split such that there are only narrow pas-
sages. Here, the movement of the particles should depend stronger
on their orientation, as there are less possibilities to get stuck in
x- than in y-direction. The last generator C (Fig. 1(c)) is an asym-
metric pattern where the focus is laid on the different effects of
narrow passages versus wide passages: there are two small pas-
sages in x-direction and one wide channel (twice the size of the
x-direction) in y-direction.

The particles moving on the fractal structures described above
are considered to be independent of each other. Apart from its co-
ordinate tuple (x, y) each particle is in addition characterized by
its orientation. In order to simplify the description the orientation
can only take values x or y, i.e. particles are either oriented hori-
zontal in the x-direction or vertical in the y-direction.

The move class of an oriented particle is then as follows: First,
in each time step, the orientation of a particle is chosen ran-
domly with probability py to be oriented in y-direction and with
px = 1 − py to be oriented in x-direction. This represents possible
influences for instance by external fields.

Then for each particle position (x, y) it will be checked,
whether there is a neighboring site in the orientation direction
of the particle, e.g. for a particle oriented in x-direction either a
black square at (x − 1, y) or (x + 1, y) has to exist. If there is no
neighbor, no move can be done, which represents a particle that is
temporarily stuck in a narrow pore/channel.

If a neighboring site exists, we choose one of the four pos-
sible neighbors with equal probability (blind ant algorithm [36]).
If the chosen position (xnew, ynew) does not exist, again no move
can be done. This reflects that the particle can only move within
the pore space. If (xnew, ynew) exists, it will be checked whether
(xnew, ynew) has at least one neighboring site in the orientation
direction of the moving particle. If there is a neighbor, the move
is allowed as the passage is wide enough so that the particle can
move into it. Otherwise, the particle can only move to this site
with pp � 1. This is motivated by having a surrounding fluid that
pushes particles into narrow pores/channels. Combing the rules of
the move class above, one can determine for each site (x, y) the
resulting probabilities of a particle to move or to stay in one time
step. Four typical situations of the resulting probabilities of this
move class are depicted exemplarily in Fig. 2. Note that the ori-
entation is chosen in each time step according to py and that the
sum over all movement probabilities plus the probability to stay
equals 1. In Fig. 2(a) the particle can move in one of four direc-
tions or stay on its current position. Due to the orientation of the
particle it can be pushed into the pore/channel (upwards) with
probability pp/4 or it stays with (1 − pp)/4. In Fig. 2(b) the par-
ticle has four possible choices: either it moves up- or downwards
with probability 1/4, it is pushed into the pore/channel with pp/4
or it stays at its current position with 1/2 − pp/4. The last two
cases represent situations where a particle is within a pore/chan-
nel. In Fig. 2(c) the particle can leave the pore/channel with 1/4
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