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Energies for the first four singlet and triplet S states of a helium atom confined at the center of an
impenetrable sphere are reported. All calculations used explicitly correlated Hylleraas basis sets. The
first triplet state is shown to lie below the first excited singlet state only when the confinement radius
is greater than 0.988ap. A simple configuration interaction calculation was performed in parallel with
Hylleraas calculation. The one-electron atomic orbitals of the configuration treatment provide insight

into the physical concepts behind the numerical results of the Hylleraas treatment. This was particularly
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radius.

helpful in understanding the level crossing and avoided crossings observed with changing confinement
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1. Introduction

The effect of spatial confinement on atomic properties was first
noted 100 years ago by Bohr in his classic 1913 paper [1]. In this
work he noted that only twelve Balmer lines were observed in
experiments using vacuum tubes while 33 lines were observed
in some astronomical spectra. The new quantum theory was first
used to study confinement of an atom in an impenetrable cavity
by Michels et al. [2] who used it in 1937 to model the effects of
pressure on the energy and polarizability of hydrogen. This was
followed by the work of Sommerfeld and Welker [3] and Sommer-
feld and Hartmann [4] who introduced solution of the confined hy-
drogen atom using confluent hypergeometric functions. From those
seminal papers, confined systems have subsequently been studied
by many workers using a variety of theoretical approaches. Con-
fined atomic and molecular systems have recently been reviewed
in two consecutive volumes of Advances in Quantum Chemistry [5]
and the interested reader is referred to those reviews.

Most confined system calculations have used the Hartree-Fock
method or density functional theory and have been restricted to
the ground state. In the course of a study of electron correlation [6]
using explicitly correlated expansions in Hylleraas coordinates [7],
we realized that extension to excited singlet and triplet states
was possible but significant reprogramming would be required to
achieve a balance between precision and computational time. That
reprogramming has been completed and the results are reported
in this work for spherically symmetric S states.
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Very recently Bhattacharyya et al. [8] published the energies
for the first four excited singlet states of the confined helium-
like systems with Z = 1-5. Their paper also contains a detailed
description of previous results on the confined He problem. The
present work is a confirmation of their calculated helium energies
as well as an extension to the helium excited triplet states. New
results that seem be physically important also are described here.

Hylleraas’ approach provides an efficient method for two-
electron calculations, but expansions in explicitly correlated basis
sets have the disadvantage noted by Mulliken [9] that “the more
accurate the calculations became, the more the concepts tended
to vanish into thin air.” Sometimes the traditional one-electron
atomic orbitals provide more insight into the physical concepts be-
hind the numerical results. To gain that insight we also performed
a set of small elementary configuration interaction (CI) calculations
that paralleled the Hylleraas energies. The CI treatment provides
insight into the intersections and the avoided crossings that occur
with changes in confinement.

2. Computational details

The approach of ten Seldam and de Groot [10] was followed
through the development of the secular determinant. The wave-
functions were expansions of the form

1 1 s
YN = [R —56- t)] [R — 56+ t)]e_as,;c/csh‘tmku”", (1)

where s, t and u are the Hylleraas coordinates [7] defined by
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Table 1
Selected energies in E}, for confined He. R is in ap.
R/ag 1's 21s 31s 41s 13s 235 335 43s
0.1 906.562423 1963.757922 2376.433159 3274.951095 2370.727023 3925.114157 4831.874925 5738.832217
0.5 22.741303 69.550421 80.065199 123.446146 78.820864 145.940357 176.363244 220.218568
1 1.015755 14.413766 15.127281 28.274446 14.359715 32.954387 38.515498 51.945225
14.43401°
1.5 —1.906956 4.272357 5.147166 10.057810 3.806768 13.035681 14.459349 20.361322
—1.906957%
2 —2.604038 0.946589 2.109932 4.201021 0.560251 6.373994 6.531128 9.890408
—2.604038% 0.56961°
2.5 —2.807835 —0.433214 0.821678 1.780156 —0.751657 2.998531 3.494876 5.345046
3 —2.872495 —1.114121 0.173325 0.645721 —1.370511 1.192269 1.987546 3.048669
—2.872494° —1.114121° —1.36799°
4 —2.900486 —1.717517 —0.458205 —0.286007 —1.874612 —0.497750 0.597762 1.009390
—2.900486° —0.458207° —1.87331°
5 —2.903412 —1.949762 —1.079197 —0.641430 —2.048044 —1.211382 0.019600 0.085991
—2.903410° —1.949761° —1.079194° —0.641647° —2.04787°
6 —2.903696 —2.050701 —1.460232 —0.735069 —2.117816 —1.562909 —0.683439 —0.257678
7 —2.903722 —2.097824 —1.675499 —1.031614 —2.148564 —1.754413 —1.123615 —0.406031
—2.903721% —2.098084% —1.676567% —1.034644% 2.14748°
8 —2.903724 —2.120562 —1.799879 —1.294020 —2.162784 —1.866425 —1.395143 —0.747592
9 —2.903724 —2.129709 —1.854537 —1.393457 —2.169481 —1.935383 —1.571914 —1.066825
10 —2.903724 —2.133647 —1.880665 —1.443232 —2.172627 —1.979424 —1.691923 —1.288056
—2.903724° —2.139619° —1.942677° —1.942674° —2.17146°
2 Ref. [8].
b Ref. [16].
S=r11+T12, t=-—r1+T19, U=ri, (2) tions were used for numerical integration (the step size 10~3aq

and R is the radius of confinement.

The factors [R — %(s =+ t)] are cutoff functions that insure the
wavefunction goes to zero at the surface of the sphere of radius R,
at the center of which the nucleus is placed. The wavefunctions
included all terms with I, +my +n, <9 subject to the requirement
that my = even for the singlet state and mj, = odd for the triplet
to ensure the required permutational symmetry of the spatial part
of wavefunctions. The resulting wavefunctions thus included 125
basis sets. For R > 2ag, o was determined by energy minimization
(see below). For R < 2ap we found that setting « = 0 changed the
calculated energies only in the sixth decimal place.

The required integrals were evaluated as the sum of the two
integrals

R s s 2R 2R—s s
/fdr:ofdsofdtt/fdquR/dsO/dtt/fdu, 3)

as derived by Pan et al. [11]. A synopsis of Pan’s method is pro-
vided in Appendix A. Using Pan’s formulation decreased the com-
putational time by 30% as compared to the method of ten Seldam
and de Groot.

Since the introduction of the cutoff function effectively triples
the number of terms in the wavefunction and each integral in the
free atom calculation is replaced by the two integrals of Eq. (3), the
number of integrals required for the confined atom calculation is
increased by a factor of six as compared to a free atom wavefunc-
tion with the same size of basis sets. All calculations were coded
in Maple 17 using 40 digit precision.

The ground and lowest triplet state were used to optimize «
for a given multiplicity and R. The higher singlet and triplet states
were then obtained by the linear variation method.

According to the Hylleraas-Undheim-MacDonald [12,13] theo-
rem, the higher roots of the secular equation are upper bounds to
the excited state eigenvalues.

To interpret the results within a more traditional orbital picture,
we also used a small configuration interaction (CI) calculation in
the basis of atomic orbitals of the He™ system confined in a spheri-
cal cavity of radius R. The radial parts of the atomic orbitals can be
described by confluent hypergeometric functions [2]. These func-

is sufficient for stable results) by traditional methods of atomic
calculations based on the Coulomb potential decomposition into
Legendre polynomials and methods of angular momentum the-
ory [14,15].

It is important here that for S states, electron configurations of
the type nén’¢’ must use orbitals with the same angular momen-
tum, ¢/ = ¢. It is also worth mentioning that when one uses the
basic configurations of the S type for triplet states, the permuta-
tional symmetry of the spatial parts of configurations requires an
additional condition n # n’. Electron configurations of the form n¢?
are important only for singlet S states of two-electron system.

We stress that our CI calculations were used only to develop a
qualitative description of the problem. There is usually no reason
to compare these numerical energies with the much more accu-
rate Hylleraas energies, as the quality of CI calculations is known
to be inferior, especially for large (R ~ 10aqg) cavities. Nevertheless
in terms of small-configurational functions one can use the more
accurate results with the traditional constructions to separate nu-
merical errors from real physical effects.

3. Results and discussion

Energies for the four lowest singlet and triplet S states were cal-
culated over the range of R from 0.1ap to 10ag. Selected energies
from this work and from [8] and [16] are shown in Table 1.
The wavefunction of Eq. (1) is competitive with the two-exponent
wavefunction of [8] for R <5 but is less accurate at large R and
for more highly excited states. This is consistent with the idea
that as R increases a second exponential term is necessary to ac-
commodate radial correlation. However, an advantage of the single
exponent expansion is that it remains numerically stable in the
tight confinement region where the energy becomes positive.

For large R, just as for the free He atom, the lowest S states of
the confined atom have configurations of the form 1sns and obey
Hund’s rules. The energies are ordered as

1's(1s?), 1°S(1s2s), 2'S(1s2s), 23S(1s3s), 3'S(1s39), ...

In the case of a spherical cavity of small radius the main contri-
bution to the energy is given by the kinetic energy. The Coulombic
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