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We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene
with square superlattice potentials by transfer matrix method. The effects of the incident angle of the
electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found
that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the
Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height
of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered
substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor
at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for
the practical application of graphene-based electronic devices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a great deal of interest in
studying graphene due to its remarkable properties and potential
applications. Graphene is a single two-dimensional layer of car-
bon atoms arranged in a hexagonal lattice structure [1–3]. At low
energy, the electron in graphene can be described by an effec-
tive massless Dirac equation, having a linear energy dispersion.
Electrons behave like relativistic and chiral particles, and make
graphene quite different from conventional materials. A novel elec-
tronic transport property in graphene is the perfect transmission
in tunneling through an arbitrarily high and wide graphene bar-
rier at normal incidence [4]. However, the transmission probability
as a function of incidence energy has a gap when Dirac electrons
transport through an electrostatic potential barrier in monolayer
graphene at nonzero angle. This transmission gap can be con-
trolled by the incidence angle, the height and width of the po-
tential barrier. Meanwhile, graphene exhibits other unusual elec-
tronic properties, such as anomalous quantum Hall effect [5,6],
minimum conductivity [7,8], and trembling motion (or Zitterbe-
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wegung) [9,10], etc. These are expected to play an important role
in the future fabrications of graphene-based nanoelectronic de-
vices.

However, some other properties of graphene are detrimental for
its nanoelectronic applications, such as the zero-gap semiconduc-
tor nature, which prevents the pinch off of charge current as re-
quested in conventional electronic devices. Different attempts have
been therefore tried in order to induce a energy band gap at Dirac
point (Dirac gap), for instance by quantum confinement of elec-
trons and holes in graphene nanoribbons [11–13] or quantum dots
[14,15]. These patterning techniques are unfortunately affected by
the edge roughness problem, namely, the edges are extensively
damaged and the resulting lattice disorder can even suppress the
efficient charge transport. Another approach is substrate-induced
band gap for graphene supported on hexagonal boron nitride
(h-BN) [16] or silicon carbide (SiC) [17,18] by making two carbon
sublattices (A and B sublattices) unequivalent. With this approach,
a band gap of 260 meV has been experimentally demonstrated.
There are also theoretical works to engineer the tunable band gap
by strain [19,20]. In addition, a recent experiment demonstrates
that patterned hydrogen adsorption on graphene induces a band
gap of at least 450 meV around the Fermi energy [21].

Beside tackling the zero-gap problem in graphene, how to con-
trol the electronic behaviors is another critical issue needs to be
solved in its nanoelectronic applications. Since superlattices are
very successful in controlling the electronic structures of many
conventional semiconducting materials, we may expect that using
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superlattice would be a good way to manipulate the electrons in
graphene. Therefore, the transport characteristics of Dirac fermions
in graphene superlattices with electrostatic potential [22–24] and
magnetic barriers [25,26] have been widely studied theoretically. In
gapless graphene-based superlattices, researchers have found that
a one-dimensional periodic-potential superlattice possesses some
distinct electronic properties, such as the strong anisotropy for the
low-energy charge carrier’s group velocities [27], the formation of
the extra Dirac points and new zero energy states [28,29], and the
unusual properties of Landau levels and the quantum Hall effect
for these extra Dirac fermions [30]. The transmission gap also ex-
ists in graphene electric superlattices which can be modulated by
the incidence angle, the number, width and hight of the barri-
ers [31–34]. Moreover, graphene superlattices have been realized
experimentally, e.g., graphene grown epitaxially on metal surfaces
demonstrate superlattice patterns with about a several nanometer
period [35,36]. Recent scanning tunneling microscopy studies of a
corrugated graphene monolayer on Rh foil show that the quasiperi-
odic ripples generate a weak one-dimensional electronic potential
in graphene leading to the emergence of the superlattice Dirac
points [37].

From previous studies, one has known that for gapless graphene
superlattices there is no transmission gap at the normal incidence
due to the Klein tunneling. New electronic properties in gapped
graphene-based devices have been discovered since Klein tunnel-
ing is suppressed due to the presence of a Dirac gap [32]. However,
most of the studies about graphene with superlattice potentials
still mainly focus on the homogenous Dirac gaps at present, i.e.,
the gaps don’t rely on the positions of the potential barriers. Re-
cently, a graphene-based superlattice formed by a periodic gap
modulation is studied theoretically by using a Dirac-type Hamilto-
nian in Ref. [38]. The forbidden minibands and extra Dirac points
arise in the electronic spectrum of the superlattice with equal
widths of the gapless and gapped graphene fractions under cer-
tain conditions. This interesting new result raises a question: what
role the inhomogeneous Dirac gap plays in the resonant tunneling
of the Dirac electrons through graphene with superlattice poten-
tials. With this question in mind, in this Letter, we investigate the
resonant transmission inside graphene superlattices with inhomo-
geneous Dirac gaps induced by staggered substrates. We design
two new open-gap schemes to construct inhomogeneous band gap
at Dirac point. One is realized on the base of graphene deposited
on a strip substrate combined from two different materials, while
the other is by varying the distance between the graphene and the
substrate at different position. It is shown that the adjustability of
the Dirac gaps provides us a new degree of freedom for modulat-
ing the transmission of the Dirac electrons in graphene. The impact
of the number of potentials, incident angle, Fermi energy, and the
height and width of the potential on the transmission properties
of Dirac electrons in these inhomogeneous band gap graphene su-
perlattices is also discussed in detail.

2. Theoretical model

Let us consider a one-dimensional graphene superlattice with
period d1 +d2 formed by position-dependent electrostatic potential
and Dirac gap. For gapped graphene superlattices, we assume that
the potential V (x) is comprised of periodic potentials with square
barriers as shown in Fig. 1. The potential V (x) can be controlled
by the electrostatic voltage imposed on the electrodes. In Refs. [32]
and [38], they reported that the energy band gaps can be realized,
e.g., on the base of graphene deposited on a strip substrate com-
bined from SiC and h-BN (Fig. 1(a)). Another method for obtaining
inhomogeneous band gap is using SiC or h-BN but either fraction
of periodic unit of the potential is suspended. The separation dis-
tance h can be adjusted according to our needs for the size of the

Fig. 1. (a) and (b) are schematic diagrams of unequally gapped graphene superlattice
with black periodic electrodes. The thick red line denotes graphene, the gray and
deep green rectangle denote SiC or h-BN, and the wathet blue rectangle denotes
substrate SiO2. (c) Schematic diagram of the electronic spectrum of the gapped
graphene superlattice, and the pink dotted line denotes the periodic potentials of
squared barriers. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this Letter.)

band gap (Fig. 1(b)). Decreasing this distance increases the Dirac
gap, as expected for a physical picture based upon a symmetry-
breaking substrate potential [16,18]. For the experimental data, we
know that the maximum energy band gap could be ∼ 260 meV
due to the sublattice symmetry breaking for SiC substrate [17].

The superlattice electronic structure in the vicinity of the
K point of the Brillouin zone is described by the Dirac-like Hamil-
tonian

Ĥ = v f σ̂ · p̂ + V (x) Î + Δ(x)σz, (1)

where p̂ = (px, p y) = (−ih̄(∂/∂x),−ih̄(∂/∂ y)) is a momentum op-
erator with two components, σ̂ = (σx, σy). Here, σx , σy and σz

are Pauli matrices, Î is a 2 × 2 unit matrix, and v F is the Fermi
velocity. Δ(x), V (x) are periodic functions equal to Δ1 and V 1, re-
spectively, at 0 � x � d1, and Δ2 and V 2 at d1 � x � d1 + d2. The
potential V j ( j = 1,2) define the shifts of the forbidden band cen-
ter in the gapped graphene with respect to the Dirac point in the
gapless graphene. We set V 2 = 0 for convenience in the following
context (see Fig. 1(c)). Generally speaking, the Fermi velocity can
differ in graphene modifications placed on different substrates. In
our model, however, we neglect the dependence v F on x suppos-
ing v F � 108 cm/s in both graphene frictions [38].

The above Hamiltonian acts on the state of a two-component
pseudo-spinor, Ψ = (ψ̃A, ψ̃B)T , where ψ̃A and ψ̃B are the smooth
envelope functions for two triangular sublattices in monolayer
graphene, and the symbol T denotes the transpose operator. In
the y direction, because of the translation invariance, the wave
functions ψ̃A,B can be factorized by ψ̃A,B = ψA,B(x)eikx y . Therefore,
from Eq. (1), we obtain

dψA

dx
− kyψA = iη+ψB , (2)

dψB

dx
+ kyψB = iη−ψA, (3)

where η± = [E − V (x) ± �]/(h̄v F ) are the coupling parameters
from ψB (ψA) to ψA (ψB), E is the incident electron energy, and
k0 = E/h̄v F corresponds to the incident electronic wavenumber.

Insides the jth barrier, V j(x) and Δ j(x) is a constant, therefore,
from Eqs. (2) and (3), we have

d2ψA,B

dx2
+ (

k2
j − k2

y

)
ψA,B = 0, (4)
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