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The excitation energy transfer between a donor–acceptor pair with fixed distance apart through
energy exchanging with environment is investigated. The total system is modeled as two two-level
systems (TLSs) interacting with many harmonic oscillators. The pair behaves coherently or incoherently,
depending on whether the dipolar coupling is stronger or weaker than the TLS–environment coupling.
The environmental linear dispersion relation gives an analytical solution to the pair’s probability involving
all the retardation times. We found that the long-time trapping of energy within the pair is caused by
the inhibiting dark-state radiative decay when two TLSs are at half a resonant wavelength.
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1. Introduction

Energy sources are the lifeblood of modern society. To avoid
depleting our natural resources and destroying the environment,
there is keen to seek for clean energy, particularly, solar power –
the available renewable energy on earth. Studies on the excitation
energy transfer in plants, algae and bacteria [1] over the past years
have shed light on creating a fully integrated energy system. For a
long time in the past, it has been believed that biological process
is classical. However, recent experimental evidences have shown
that light-harvesting complexes may harness quantum-mechanical
effects such as the surprisingly long-lasting coherence in photo-
synthesis [2–4]. Therefore, excitation energy transfer assisted by
quantum coherence attracts considerable attention recently [5–13].
So far the mechanism of the light-harvesting process is still elusive,
and scientists continuously try to understand how light harvesting
complexes can capture and transport light energy with near-unit
efficiency from theoretical aspects, such as the symmetry of the
initial quantum states [8,9], the structure and arrangement of an-
tenna complexes [10], the accumulative quantum phases in closed
transfer pathways [11,12], the emergence of correlated energetic
fluctuations between different chromophores [14–19]. Ongoing re-
searches inspire considerable efforts to create artificial systems for
quantum transport and optimized solar cells in semiconductor fab-
rication [20–23].
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The donor–acceptor model serves as a toy model to study the
dynamics of the excitation energy transfer in the presence of en-
vironments. To understand the correlation between fluctuations in
the donor–acceptor pair and explore the potential applications in
modern engineering technique and manufacture, we consider the
quantum coherence transfer of excitation energy between a donor
and an acceptor with fixed distance d apart. In contrary to the
popular assumption of independent environments for donor and
acceptor, we assume that the donor and acceptor share an environ-
ment. It is well known that the environment causes two distinct
effects on the quantum system: quantum dissipation and decoher-
ence. Only quantum dissipation allows energy exchange between
the system and environment. So we consider the effect of quantum
dissipation on the quantum coherence transfer of excitations be-
tween a donor–acceptor pair. In our model, the donor and acceptor
are modeled as two two-level systems (TLSs) and the environment
is modeled as many harmonic oscillators [24]. The general treat-
ment of this problem for an arbitrary line shape of the reservoir
coupling spectrum is achieved by the Laplace transformation un-
der Wigner–Weisskopf approximation in one quantum subspace.
An analytical solution to the probability amplitudes of the pair is
obtained by taking the linear expansion of the environmental fre-
quency. In our approach, it is not necessary to assume whether the
dipole coupling is weaker or stronger than the pair–environment
coupling.

This Letter is organized as follows. In Section 2, we present
our model. In Section 3, a general approach is given in the one
quantum subspace where the linewidths of the donor and accep-
tor are implied in the self-energies and the position-dependent
self-energies. In Section 4, we evaluate the probability amplitude
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Fig. 1. (Color online.) Sketch of a donor–acceptor pair embedded in an environment.
The donor and acceptor are modeled as two two-level systems, which interact with
each other by the dipole–dipole interaction, while the environment is treated as
many oscillators with frequencies ωk .

of finding either the donor or the acceptor on its excited state by
taking the linear expansion of the environmental frequency. We
draw our conclusions in Section 5.

2. Description of the model

Consider a donor–acceptor pair embedded in a common envi-
ronment. Both donor and acceptor are modeled as two two-level
systems with fixed distance d apart, as shown in Fig. 1, where TLS1
and TLS2 represent the donor and acceptor respectively. Each TLS
has a ground state |gi〉, an excited state |ei〉 and energy spacing Ωi .
Define σ+

i and σ−
i as the raising and lowering pseudo-spin oper-

ators for the ith TLS. The Hamiltonian H S of the donor–acceptor
pair is the sum of the individual TLS Hamiltonian and dipole–
dipole interaction Hamiltonian

H S =
∑

i=1,2

h̄
Ωi

2
σ z

i + h̄ J
(
σ+

1 σ−
2 + σ+

2 σ−
1

)
, (1)

where J = V /d3 is the dipole–dipole coupling strength.
The environment consists of many oscillators with frequen-

cies ωk , whose Hamiltonian reads

H E =
∑

k

h̄ωka†
kak, (2)

where the creation and annihilation operators a†
k and ak satisfy

the bosonic commutation relation [ak,a†
k′ ] = δkk′ . In most natural

condition, only single excitation occurs [25]. Therefore, one can
regard the environment as a field described by the plane-wave
modes associated with operators a†

k and ak . The TLS–environment
interaction is of the “electric-dipole form”. In the rotating-wave ap-
proximation, the TLS–environment Hamiltonian reads

H S E =
∑

ki

h̄
(

gikσ
+
i ak + g∗

ikσ
−
i a†

k

)
, (3)

where the coupling strength gik = |gik|eikxi is dependent on the
location of the ith TLS. Here, we assume the donor and acceptor
are located at position x1 and x2, respectively. Their inter-distance
d ≡ |x1 − x2|. The term eikxi in the coupling strength gik leads to
correlation between the donor and acceptor via the environment.
The total system is described by the Hamiltonian

H = H S + H E + H S E . (4)

The system described by Eq. (4) could be realized by two im-
pure atoms inside a crystal. The lattice vibrational modes serve
as the environment. The dipole–dipole interaction comes from the
Coulomb interaction between the electrons of the donor and ac-
ceptor which is expanded in a multiple series up to powers d−3.

3. Formulation for single excitation

The single-excitation subspace is spanned by the states {|eg0〉,
|ge0〉, |gg1k〉}, where {|gg1k〉} represents the state with one exci-
tation in the kth mode of the environment and both TLSs on the
ground state, while |D〉 ≡ |eg0〉 and |A〉 ≡ |ge0〉 represent states
with a single excitation in one of the TLSs. The state of the system
at time t can be expressed as
∣∣ψ(t)

〉 = e−iΩt(C1|D〉 + C2|A〉) +
∑

k

Ake−iωkt |gg1k〉, (5)

where Ω ≡ (Ω1 + Ω2)/2 is the average energy spacing of the pair.
Ci and Ak are the time-dependent probability amplitudes for find-
ing the system on the corresponding state.

Inserting the state (5) into Schrödinger equation, we obtain the
evolution equations for the amplitudes as

∂t C1 = −i
�

2
C1 − i J C2 − i

∑
k

g1k Ake−i(ωk−Ω)t, (6a)

∂t C2 = i
�

2
C2 − i J C1 − i

∑
k

g2k Ake−i(ωk−Ω)t, (6b)

∂t Ak = −i
(

g∗
1kC1 + g∗

2kC2
)
ei(ωk−Ω)t, (6c)

where � = Ω1 − Ω2 is the energy detuning between TLS1
and TLS2. Integrating Eq. (6c) for Ak , and then inserting it into
Eq. (6a), (6b) for Ci , we obtain the exact integro-differential equa-
tions for Ci . We then perform Laplace transform to the integro-
differential equations. With the initial conditions Ci(t = 0) ≡ Ci0,
we obtain

sC̃1 = C10 − i
�

2
C̃1 − C̃1Φ1(s) − [

i J + Ψ (s)
]
C̃2, (7a)

sC̃2 = C20 + i
�

2
C̃2 − C̃2Φ2(s) − [

i J + Ψ (s)
]
C̃1, (7b)

where C̃i denotes the Laplace transform of Ci(t). In the above,
we have introduced

Φi(s) =
∑

k

|gik|2
s + i(ωk − Ω)

, (8)

Ψ (s) =
∑

k

g∗
2k g1k

s + i(ωk − Ω)
. (9)

The function Φi(s) describes the self-energy of the excited state of
the ith TLS and the ground state of the other TLS. The function
Ψ (s) describes the x-dependent self-energy. Actually, the function
Φi(s) is related to the reservoir coupling spectrum

Γi(ω) =
∑

k

π |gik|2δ(ω − ωk), (10)

which characterizes the spectral shape of the reservoir. Since the
states in the environment are very dense (continuum), one can
replace the summation by integral. In the spirit of the Weisskopf–
Wigner approximation [26] or pole approximation [27], where the
environment is assumed to be spectrally flat and the frequencies
of the TLS is assumed to be deeply embedded in the continuum,
we neglect the z-dependence of function Φi(ε + iz) by letting
z = 0 [27]

Γi(Ω) = Φi(ε + iz)|z=0 =
(

ηπ |gik|2
∂kωk

)
k=k0

, (11)

where the wave number k0 is the solution of ωk = Ω and the
constant η is a dimension-dependent parameter (e.g. for one di-
mension, η = L/(2π)). Hereafter, for convenience, we will let
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