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We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are
considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons
are predicted. The second one is given by the XY model, leading to a vortex turning around the surface.
Helical states are also considered, however, topological arguments cannot be used to ensure its stability.
The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for
two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy
depends on the underlying geometry.
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1. Introduction

Geometrical and topological concepts and tools are important
in many branches of natural sciences, particularly, in physics. For
instance, the idea of symmetry, which is intimately associated with
geometry, is a keystone for studying a number of fundamental
properties of several physical systems, e.g., the Noether theorem
asserts that there is a conserved quantity to each continuous sym-
metry of the associated action. Topology, in turn, is crucial for
classifying and for giving stability to certain excitations, such as
solitons, extending objects having finite energy, and vortices, pre-
senting a non-vanishing vorticity around a given singular point
or a topological obstruction. In addition, the observed vortex-pair
dissociation is the mechanism behind the topological phase transi-
tion [1]. Vortices and solitons have been observed in a number of
systems, such as superconductors, superfluids, and magnetic mate-
rials [2,3].

Curvature effects play an important role in the characteristics of
these topological structures. For instance, Vitelli et al. have shown
that in-plane vortices interact not only with each other, but also
with the curvature of the substrate [4]. Curvature is also an im-
portant factor in the magnetic systems behaviour, in which the
interaction of the out-of-plane component of magnetic vortices
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with curved defects must cause a chiral symmetry breaking in its
gyrotropic motion due the thin-film roughness [5,6]. Furthermore,
the easy-surface Heisenberg model in magnetic spherical shells
predicts a coupling between the localized out-of-surface compo-
nent of the vortex with its non-localized in-surface structure, as-
sociated with the curvature of the underlying geometry [7] and
still, the smooth and variable curvature of ferromagnetic nanotorus
ensures the stability of the vortex for smaller radius than their
nanoring counterparts [8].

In the case of two-dimensional systems, vortices and solitons
can appear like solutions of the continuous Heisenberg model,
which has been used to analyse the dynamic and static properties
of vortices, showing that the energy of these excitations is closely
linked to the geometrical properties of the surface [9–14]. It has
also been shown that, for simply connected surfaces, the vortex
energy presents a divergence, which can be controlled by the inser-
tion of a cutoff in the region where the continuous limit of Heisen-
berg Hamiltonian has not validity. In the case of magnetic systems,
this divergence must be controlled by the development of an out-
of-plane component in the vortex core region. Soliton-like solution
has also been considered in the above cited works and it has been
shown that its characteristic length depends on the length scale
of the surface. For finite surfaces, fractional/half-soliton solutions
have been found [11,15]. Furthermore, the interaction of an exter-
nal magnetic field with Heisenberg spins on a cylindrical surface
yields a 2π soliton-like solution, inducing a deformation at the
sector where the spins are pointing in the opposite direction to the

0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.03.028

http://dx.doi.org/10.1016/j.physleta.2013.03.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:vagson.santos@bonfim.ifbaiano.edu.br
http://dx.doi.org/10.1016/j.physleta.2013.03.028
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physleta.2013.03.028&domain=pdf


V.L. Carvalho-Santos et al. / Physics Letters A 377 (2013) 1308–1316 1309

magnetic field [16]. A 2π soliton has also been predicted to appear
on curved surfaces with cylindrical symmetry, provided the mag-
netic field is coupled with the curvature of the substrate [17,18].

In this Letter, we study the anisotropic Heisenberg model on
curved surfaces with cylindrical symmetry. We are interested in
studying a class of topological spin textures on these manifolds in
such way that both, soliton and vortex-like solutions are consid-
ered. Solitons are predicted to appear on an infinite cylindrically
symmetric surface, if the isotropic case is taken into account. In
our assumptions, the soliton characteristic length is rescheduled
to one and does not depend on the characteristic length scale of
the surface. For finite surfaces, fractional solitons, which have not
topological stability, are found.

Our analysis includes the study of the XY model and vortex-like
solutions are considered. It is shown that, for non-simply con-
nected manifolds, the obstruction of the surface ensures the vortex
topological stability due the removal of spurious divergences ap-
pearing in the core region. The XY model can also yield a helical-
like state, however topological arguments must not be used to
ensure the stability of this spin configuration. The energy of these
spin textures is calculated and we get that it depends on the sur-
face curvature. Furthermore, we calculate the critical anisotropy
parameter for which the vortex appears as the ground state and we
show that it is also associated to the geometrical properties of the
surface. The vortex energy and the critical anisotropy parameter for
two different geometries: the catenoid and hyperboloid, which are
negatively curved and non-simply connected manifolds, are explic-
itly calculated. The choice for studying these surfaces is associated
with the fact that both can be realized in fluid interfaces provided
with an orientational ordered phase as a consequence of the in-
terplay between surface tension and orientational elasticity [19].
Furthermore, catenoid is the shape minimizing the curvature elas-
tic energy, appearing in phospholipid vesicles of high topology [20]
and the symmetry of these geometries allows us to compare our
results to these found for the cylindrical case, largely explored in
nanomagnetism researches.

To proceed with our analysis, this work is organized as follows:
in Section 2 we present the continuous anisotropic Heisenberg
model on rotationally symmetric surfaces. The results and discus-
sions for the isotropic Heisenberg Hamiltonian and the XY model
are also considered in this section. Section 3 brings the discussions
about the model on the catenoid and hyperboloid surfaces and
compare our results with that obtained for the surface of a cylin-
der. Finally, in Section 4, we present our conclusions and prospects
for future works.

2. Continuum Heisenberg model on curved surfaces

The anisotropic exchange Heisenberg model, for nearest neigh-
bour interacting spins on a two-dimensional lattice, is given by the
Hamiltonian below:

H latt = − J ′ ∑
〈i, j〉

[
mx

i mx
j + my

i my
j + (1 + λ)mz

i mz
j

]
, (1)

where J ′ denotes the coupling between neighbouring spins, and
according to J ′ < 0 or J ′ > 0, the Hamiltonian describes a ferro
or antiferromagnetic system, respectively. �mi = (mx

i ,my
i ,mz

i ) is the
spin operator at site i and the parameter λ accounts for the
anisotropy interaction amongst spins: for λ > 0, spins tend to align
along the internal Z axis (easy-axis regime); for λ = 0, one gets
the isotropic case; for −1 < λ < 0, we have the easy-plane regime,
while the λ = −1 case yields to the so-called XY model, which has
been considered on curved surfaces [21]. If we focus on a two-
component spin, imposing mz ≡ 0, so that �mPRM = (mx,my), we
get the planar rotator model (PRM).

In the continuum approach of spatial and spin variables, valid
at sufficiently large wavelength and low temperature, the model
given by Eq. (1) may be written as follows ( J ≡ J ′/2):

H = −4 J

a2

∫ ∫
1√|g|

(
1 + λm2

z

)
dη1 dη2

+ J

∫ ∫ 2∑
i, j=1

3∑
a,b=1

gijhab(1 + δa3λ)

×
(

∂ma

∂ηi

)(
∂mb

∂η j

)√|g|dη1 dη2, (2)

where a is the network spacing, the surface has curvilinear coor-
dinates η1 and η2,

√|g| = √|det[gij]|, gij and hab are the surface
and spin space metrics, respectively (as usual, gij g jk = δi

k). Now,
�m = (mx,my,mz) ≡ (sin Θ cosΦ, sin Θ sin Φ, cosΘ) is the classi-
cal spin vector field valued on a unity sphere (internal space),
so that Θ = Θ(η1, η2) and Φ = Φ(η1, η2). With this, the Carte-
sian parametrization for �m yields to hab = δab . Note that the first
term in the first integral in the Hamiltonian (2) is the ground
state energy and we will renormalize it to be zero. It can also
be noted that, if λ decreases from 0 to −1, the term depend-
ing on m2

z increases the energy if mz 	= 0, thus, the smallest en-
ergy associated to the anisotropic Heisenberg Hamiltonian will oc-
cur for mz = 0. The Hamiltonian (2) may be also viewed as the
anisotropic non-linear σ model (NLσ M), which lies on an arbi-
trary two-dimensional geometry. Thus, besides ordinary spins, the
above model can be used to describe another condensed mat-
ter systems, e.g., a superfluid helium film, thin superconducting
films [4,22], a nematic liquid crystal confined on curved sur-
faces [23] or a spin ladder, which consists in two or more coupled
spin chains [24].

Our interest is to study the above model on curved surfaces
with cylindrical symmetry, which, in cylindrical coordinate system,
can be parametrized by r = (ρ(z), φ, z), where ρ(z) ≡ ρ is the ra-
dius of the surface at height z, and φ accounts for the azimuthal
angle. In this case, we have that the covariant metric elements are
given by

gφφ = 1

gφφ
= ρ2 and gzz = 1

gzz
= 1 + ρ ′2, (3)

where ρ ′ = dρ/dz. In this case, the Hamiltonian (2) can be rewrit-
ten as

H = J

∫ ∫ {√
gφφ

gzz

[
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+
√

gzz
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[
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−
√

gzz

gφφ

4λ cos2 Θ

a2

}
dz dφ, (4)

where f (Θ) = 1 + λ sin2 Θ .
The Euler–Lagrange equations derived from the Hamiltonian (4)

are evaluated to give

2 f (Θ)
(
∂2
ζ Θ + ∂2

φΘ
)

= sin 2Θ

{
(∂ζ Φ)2 + (∂φΦ)2 − λ

[
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+ 4λ
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}
(5)
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